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Abstract 

Objective: Thrombosis, the formation of clots in blood vessels, poses serious health risks such as pulmonary embolism 

and post-thrombotic syndrome. Ultrasound (US) imaging is widely used for its safety and real-time capability but suffers 

from operator dependency. This scoping review explores the application of deep learning (DL) methods to improve 

thrombosis detection and risk assessment using US imaging, focusing on venous, arterial, and cardiac contexts. 

Methods: A scoping review was conducted in accordance with PRISMA-ScR methodology. Searches in PubMed and 

Scopus combined MeSH terms and keywords related to DL, ultrasound, and thrombosis. Studies were eligible if they 

applied DL to US imaging for thrombus detection, classification, segmentation, or risk prediction. Only original, English-

language research using vascular US modalities (e.g., B-mode, Doppler, Intravascular Ultrasound [IVUS], or 

Transesophageal Echocardiography [TEE]) was included. Screening and full-text review were conducted independently, 

and data were extracted using a standardized charting form. 

Results: From 233 records, 22 studies met the inclusion criteria. Convolutional Neural Networks (CNNs), U-Net, 

Residual Neural Network (ResNet), and Artificial Neural Networks (ANNs) were commonly used for classification, 

segmentation, and thrombus localization. DL models supported Deep Vein Thrombosis (DVT) diagnosis via vein 

compressibility analysis as well as Point-of-Care Ultrasound (POCUS). Arterial thrombosis detection leveraged plaque 

segmentation and IVUS-based vessel reconstruction, while cardiac applications used TEE to differentiate thrombi from 

tumours. Cross-validation and external datasets were frequently used, with sensitivity, specificity, accuracy, and Area 

Under the Curve (AUC) among reported metrics. 

Conclusion: DL-based methods have shown substantial potential to improve diagnostic accuracy, automate image 

analysis, and support clinical decision-making in thrombosis management. Despite these advances, challenges such as 

limited datasets, image quality variability, and a lack of multi-centre validation remain. Future research should focus on 

real-world clinical integration and the development of standardized, publicly available datasets. 

Keywords: Deep Learning, Thrombosis, Ultrasound Imaging, Scoping Review, PRISMA-ScR. 

1. Introduction 

Thrombosis [1], the pathological formation of blood clots within blood vessels, remains a major global health 

concern due to its association with life-threatening conditions such as pulmonary embolism (PE), stroke, myocardial 

infarction, and chronic post-thrombotic syndrome. Early detection and accurate risk stratification are critical for 

preventing severe complications and improving patient outcomes. Among imaging modalities, ultrasound (US) has long 

been established as the preferred method for diagnosing vascular conditions, particularly due to its real-time capabilities, 

portability, non-invasiveness, and absence of ionizing radiation [2,3]. 

Despite its advantages, the accuracy and reliability of US imaging are often constrained by operator dependency, 

variability in interpretation, and image quality limitations, especially in deep or complex anatomical structures [4]. These 

limitations underscore the need for automated and objective interpretation tools that can assist clinicians in diagnosis 

and risk assessment tasks. In this context, Artificial Intelligence (AI), and more specifically Deep Learning (DL), has 

emerged as a transformative tool in medical imaging, capable of enhancing image analysis, enabling real-time decision 

support, and reducing inter-observer variability [5–7]. 
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While individual studies and reviews have demonstrated promising applications of artificial intelligence (AI) and 

machine learning (ML) in vascular medicine, a focused synthesis on deep learning (DL) methods specifically for 

thrombosis detection and risk assessment using ultrasound (US) imaging remains absent. Several reviews have explored 

AI applications in vascular surgery, cardiovascular disease risk prediction, and plaque characterization, often 

emphasizing imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI), or invasive 

angiography over ultrasound. For instance, a bibliometric analysis of AI in vascular surgery found notable progress in 

predictive modelling and diagnostic tools but lacked thrombosis-specific implementations [8]. Similarly, reviews on 

cardiovascular risk stratification using AI noted strong performance in predictive modelling but did not address thrombus 

detection or use US imaging [9]. 

Other related works have explored AI-driven analysis of peripheral artery disease, cerebrovascular disease, and deep 

vein thrombosis (DVT), often applying ML techniques to contrast-enhanced MRI or CT images [10]. While such 

approaches demonstrate enhanced diagnostic capabilities, they fall short in terms of generalizability and practical 

integration in real-time clinical settings, particularly for non-invasive US imaging. Studies applying DL to plaque 

characterization using US—such as segmentation of intima-media thickness or vulnerable plaque detection—provide 

insights relevant to thrombotic risk, but they rarely include thrombus classification or US-based risk assessment [11–

14]. 

More directly relevant literature on venous thromboembolism (VTE) prediction and embolism classification has 

demonstrated that DL and ML models outperform traditional clinical scoring systems [15,16]. Nevertheless, challenges 

such as limited dataset quality, high bias risk, lack of external validation, and a reliance on non-ultrasound modalities 

remain common limitations [17,18]. In short, while related works show the potential of AI in vascular diagnostics, they 

fall short of delivering an end-to-end framework for DL-based thrombosis detection using ultrasound. 

To address these gaps, the present scoping review provides a consolidated and structured evaluation of DL 

applications specific to thrombosis detection and risk assessment via US imaging. This includes analysis of clinical 

applications, model architectures, validation strategies, and performance metrics reported in the literature. It aims to 

serve as a resource for clinicians, researchers, and policymakers, guiding future AI development in this domain and 

supporting real-world implementation of DL tools in thrombosis diagnostics. More specifically, this review focuses on 

providing answers to the following research questions (RQs):  

RQ1. What is the primary clinical focus of the study (i.e., thrombosis or related conditions)? 

RQ2. How does the study contribute to thrombosis detection, risk assessment, or clinical decision-making in 

thrombotic conditions? 

RQ3. What ultrasound imaging method used (e.g., B-mode US, Doppler US)? 

RQ4. What is the problem addressed by employing a DL model on ultrasound images? 

RQ5. What DL/ML models are used in thrombosis detection or risk assessment with ultrasound imaging? 

RQ6. What validation methods have been employed to assess DL models? 

RQ7. What performance metrics (e.g., sensitivity, specificity, accuracy) have been reported for DL approaches? 

RQ8. What kind of datasets are being used, and whether the dataset is available? 

RQ9. What challenges or limitations have been identified in proposed DL approaches? 

2. Materials and methods 

This work aims to perform a qualitative scoping review conducted to analyse and synthesize existing research on 

the application of deep learning (DL) in thrombosis detection and risk assessment using ultrasound imaging. This review 

follows the PRISMA-ScR methodology [19], ensuring a structured, transparent, and reproducible approach to the 

identification, selection, and synthesis of relevant literature. 

2.1. Search Strategy 

To identify relevant peer-reviewed publications, a systematic search strategy was designed using a combination of 

Boolean operators, MeSH terms, and relevant keywords. The search was conducted in two primary electronic databases: 



 

4 

− PubMed (a key database for biomedical literature) 

− Scopus (a multidisciplinary scientific database) 

The search strings were carefully crafted to optimize the retrieval of relevant studies:  

− PubMed Query: 

("deep learning"[Title/Abstract] OR "neural network"[Title/Abstract] OR "neural networks"[Title/Abstract] 

OR "deep learning"[MeSH Terms] OR "Neural Networks, Computer"[MeSH Terms] OR (deep[Title/Abstract] 

AND learning[Title/Abstract]) OR (neural[Title/Abstract] AND network*[Title/Abstract])) AND 

(ultrasound*[Title/Abstract] OR ultrasonic*[Title/Abstract] OR sonography[Title/Abstract] OR 

ultrasonography[Title/Abstract] OR echography[Title/Abstract] OR ultrasonographic[Title/Abstract] OR 

echotomography[Title/Abstract] OR ultrasonography[MeSH Terms]) AND (thrombosis[Title/Abstract] OR 

thromboses[Title/Abstract] OR thrombus[Title/Abstract] OR clot*[Title/Abstract] OR 

atherothrombosis[Title/Abstract] OR thrombosis[MeSH Terms]) 

− Scopus Query: 

TITLE-ABS-KEY ("deep learning" OR "neural network" OR "neural networks" OR (deep AND learning) OR 

(neural AND network*)) AND TITLE-ABS-KEY (ultrasound* OR ultrasonic* OR sonography OR 

ultrasonography OR echography OR ultrasonographic OR echotomography) AND TITLE-ABS-KEY 

(thrombosis OR thromboses OR thrombus OR clot* OR atherothrombosis) 

The search was conducted systematically, with no restrictions on publication year to ensure a comprehensive dataset 

of relevant research.  

2.2. Eligibility Criteria 

To ensure that only relevant studies were included, the following inclusion and exclusion criteria were established: 

Inclusion Criteria: 

1. Study Focus: The study must explore the use of DL models in thrombosis detection and/or risk assessment using 

ultrasound imaging. 

2. Application of AI: Research must focus on image acquisition, enhancement, segmentation, classification, thrombus 

localization, blood flow analysis, risk prediction, or decision support using AI techniques. 

3. Target Medical Condition: Studies must focus on medical conditions related to thrombosis, including but not limited 

to venous thrombosis (e.g., deep vein thrombosis, pulmonary embolism), arterial thrombosis (e.g., carotid or 

coronary thrombi, plaque rupture), and cardiac thrombosis (e.g., left atrial appendage thrombi, intracardiac masses). 

4. Imaging Modality: The study must use vascular ultrasound (US) or Doppler ultrasound (DUS) as the primary 

imaging modality, including B-mode US, compression US, intravascular ultrasound (IVUS), or transesophageal 

echocardiography (TEE). 

5. Publication Type: The study must be an original research article, published in peer-reviewed journals or conference 

proceedings. 

6. Language: Studies must be published in English. 

Exclusion Criteria: 

1. Non-thrombosis or non-ultrasound studies (e.g., studies focusing solely on CT, MRI, or X-ray imaging without 

ultrasound-based assessment). 

2. Studies not involving AI/ML (e.g., manual interpretation, rule-based algorithms, or traditional statistical methods 

without DL application). 

3. Editorials, reviews, positions, opinion pieces, conference abstracts, or commentaries without substantive data 

analysis. 

4. Studies with incomplete AI methodology, such as missing model details, dataset descriptions, performance metrics, 

or validation strategies. 
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5. Studies focusing exclusively on vascular diseases without thrombotic relevance (e.g., general atherosclerosis studies 

without thrombus detection or risk assessment). 

The eligibility screening process followed the PRISMA-ScR guidelines, with two independent reviewers assessing 

each study based on the inclusion and exclusion criteria. The primary investigator (first author) performed the initial 

screening, while the other (second author) reviewed the selections and resolved any discrepancies. Disagreements were 

settled through discussion. 

2.3. Selection of Sources 

The study selection process was carried out in two phases to ensure the inclusion of relevant research aligned with 

the objectives of this work: 

1. Title and Abstract Screening: 

− Two independent reviewers screened titles and abstracts of retrieved studies. 

− Publications unrelated to DL in thrombosis detection or risk assessment using ultrasound imaging were 

excluded. 

− Any discrepancies were resolved through discussion. 

2. Full-Text Review: 

− A full-text screening was performed on shortlisted articles from the initial screening phase. 

− Only original research papers directly addressing the research questions were included. 

2.4. Data Extraction and Charting 

A standardized data extraction form was developed to systematically collect key information from each included 

study. The extracted data included: 

General Study Information: 

− Author(s), Year of Publication 

− Type of Publication (Journal/Conference Paper) 

Clinical Focus: 

− Clinical primary focus (i.e., thrombosis or related conditions) 

− Clinical relevance to thrombosis 

− US Imaging Modality Used (e.g., B-mode US, Doppler US) 

AI Model and Methodology: 

− AI Model Used (e.g., CNN, ResNet, U-Net, RF, SVM) 

− Type of Task (e.g., Classification, Segmentation) 

− Validation Method (e.g., Cross-validation, External Validation) 

− Performance Metrics (e.g., Sensitivity, Specificity, Accuracy, F1-Score, AUC) 

Training Datasets: 

− Dataset Size and Content 

− Availability 

Challenges and Limitations: 

− Model Generalizability 

− Interpretability Issues 

2.5. Synthesis of Results 
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The extracted data were analysed to provide a comprehensive overview of AI-based thrombosis detection using 

ultrasound imaging. Key findings include the prevalent use of CNN, U-Net, and ResNet models for classification and 

segmentation tasks, with validation methods primarily relying on cross-validation and external dataset testing. The 

review highlights that DVT and PE are the most studied thrombosis types, with performance metrics such as sensitivity, 

specificity, accuracy, and AUC frequently reported. These individual characteristics, including them presented in 

previous section, of each included publication are presented in tabular form. Computed summaries and graphical 

representations of charted data frequencies are presented. Finally, the findings for each recognized type of thrombosis 

are summarized and discussed. 

3. Results 

3.1. Selection of Relevant Sources 

A total of 233 records were identified through PubMed (n=64) and Scopus (n=169) in August 2024. After removing 

50 duplicates, 183 records underwent screening based on titles and abstracts. Of these, 120 were excluded for reasons 

such as being literature reviews, editorials, non-English publications, or not being relevant to AI, thrombosis, or 

ultrasound imaging. The remaining 63 full-text articles were assessed for eligibility, leading to the exclusion of 41 studies 

due to topic misalignment, lack of focus on thrombosis detection, inaccessibility, or unavailability. In the final selection, 

22 studies were included in the scoping review to ensure alignment with the research objectives. The source selection 

process is shown in Figure 1. 

  

Figure 1. Source selection process from PubMed and Scopus search engines (PRISMA flowchart). 
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3.2. Characteristics of Sources and Synthesis of Results 

The characteristics and data chart answering research question RQ1 to RQ9 for each of the 22 research papers 

included in the scoping review are presented in Table 1, Table 2 and Table 3. 

Table 1. Research papers included in the scoping review, their characteristics, the clinical primary focus, the relevance to 

thrombosis, the US imaging method, and the DL problem addressed. 

Author (year) Publication 

Type 

RQ1. What is the 

clinical primary 

focus? 

RQ2. What 

is the 

study’s 

clinical 

relevance to 

thrombosis? 

RQ3. What US 

imaging method 

used? 

RQ4. What is the problem 

addressed by employing a 

DL model? 

Gerber et al. 

(2000) [20] 

Article Intracardiac thrombi, 

including LA and LAA 

Direct 

thrombosis 

detection 

Transesophageal 

Echocardiography 

(TEE) 

Classification of intracardiac 

tumours and thrombi 

Kyriacou et al. 

(2005) [21] 

Conference 

paper 

Carotid atherosclerotic 

plaque 

Thrombotic 

risk 

assessment 

B-mode ultrasound 

imaging 

Classification of carotid 

plaques as symptomatic 

(unstable, associated with 

stroke, TIA, or AF) or 

asymptomatic 

Strzelecki et 

al. (2006) [22] 

Article Intracardiac thrombi Direct 

thrombosis 

detection 

Echocardiography 

(cardiac ultrasound, 

transesophageal) 

Classification & segmentation 

of intracardiac thrombi, 

benign & malignant tumours 

Dahabiah et 

al. (2007) [23] 

Conference 

paper 

Venous thrombosis 

(VT), specifically deep 

and superficial vein 

thrombosis 

Direct 

thrombosis 

detection 

B-mode ultrasound 

imaging 

Echogenicity and 

echostructure characterization 

of venous thrombosis (VT) 

Sun et al. 

(2014) [24] 

Article Left atrial (LA) and left 

atrial appendage (LAA) 

thrombi 

Direct 

thrombosis 

detection 

Transesophageal 

Echocardiography 

(TEE) 

Detection of left atrial (LA) 

and left atrial appendage 

(LAA) thrombi 

Smistad & 

Løvstakken 

(2016) [25] 

Conference 

paper 

Blood vessel 

segmentation 

Potential 

application 

for 

thrombotic 

risk 

B-mode ultrasound 

imaging 

Segmentation of blood 

vessels (position and size) 

Jun et al. 

(2017) [26] 

Conference 

paper 

Coronary thrombosis 

(thin-cap 

fibroatheroma) 

Thrombotic 

risk 

assessment 

Intravascular 

Ultrasound (IVUS) 

Classification of thin-cap 

fibroatheroma (TCFA) vs. 

non-TCFA 

Tanno et al. 

(2018) [27] 

Conference 

paper 

Deep Vein Thrombosis 

(DVT) in the femoral 

and popliteal veins 

Direct 

thrombosis 

detection 

B-mode 

compression 

ultrasound imaging 

Classification of vein 

compressibility and 

anatomical landmarks 

Jun et al. 

(2019) [28] 

Article Coronary thrombosis Thrombotic 

risk 

assessment 

Intravascular 

Ultrasound (IVUS) 

Classification of thin-cap 

fibroatheroma (TCFA) 

Cao et al. 

(2020) [29] 

Conference 

paper 

Coronary plaque 

rupture leading to 

thrombosis 

Thrombotic 

risk 

assessment 

Intravascular 

Ultrasound (IVUS) 

Classification of normal vs. 

bifurcated blood vessels and 

segmentation of vessel walls 

in order to 3D reconstruct the 

segmented blood vessels 

Cao et al. 

(2020) [30] 

Article Atherosclerosis-related 

plaque rupture & 

thrombosis 

Thrombotic 

risk 

assessment 

Intravascular 

ultrasound (IVUS) 

Prediction of vulnerable vs. 

stable plaques 
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Author (year) Publication 

Type 

RQ1. What is the 

clinical primary 

focus? 

RQ2. What 

is the 

study’s 

clinical 

relevance to 

thrombosis? 

RQ3. What US 

imaging method 

used? 

RQ4. What is the problem 

addressed by employing a 

DL model? 

Johnstonbaugh 

et al. (2020) 

[31] 

Article Photoacoustic imaging 

for vascular assessment 

Potential 

application 

for 

thrombotic 

risk 

Photoacoustic 

imaging (PAI) 

combined with 

ultrasound 

detection 

Localization of photoacoustic 

(PA) wavefront origins in 

deep tissue for potential 

vascular applications, 

including deep vein 

thrombosis (DVT) 

Bai et al. 

(2021) [32] 

Article Iliac Vein Compression 

Syndrome (IVCS) 

Indirect 

thrombosis 

assessment 

B-mode 

compression 

ultrasound imaging 

Detection of iliac vein 

compression points 

Kainz et al. 

(2021) [33] 

Article Deep Vein Thrombosis 

(DVT) in the femoral 

and popliteal veins 

Direct 

thrombosis 

detection 

B-mode 

compression 

ultrasound imaging 

Predict the presence or 

absence of DVT by analysing 

vein compressibility 

Hernanda et 

al. (2022) [34] 

Conference 

paper 

Deep Vein Thrombosis 

(DVT) 

Direct 

thrombosis 

detection 

B-mode ultrasound 

imaging 

Semantic segmentation of 

venous areas in US images to 

detect DVT 

Leblanc et al. 

(2022) [35] 

Article Peripheral artery 

disease (PAD) lesions 

(stenosis/thrombosis) 

Indirect 

thrombosis 

assessment 

B-mode ultrasound 

imaging 

Predict out-of-plane 

translation for stretched 

reconstruction of femoral 

artery from 2D US 

Lei et al. 

(2022) [36] 

Conference 

paper 

Carotid artery 

thrombosis and 

atherosclerotic plaque 

Thrombotic 

risk 

assessment 

Ultrasound Doppler 

RF signals 

Estimation of carotid blood 

flow velocity 

Olivier et al. 

(2023) [37] 

Conference 

paper 

Deep vein thrombosis 

(DVT) with prediction 

of associated 

pulmonary embolism 

(PE) 

Direct 

thrombosis 

detection 

B-mode ultrasound 

imaging 

Predicting pulmonary 

embolism (PE) occurrence in 

patients with deep vein 

thrombosis (DVT) using US 

images and 5 clinical factors 

Meng et al. 

(2023) [38] 

Article Coronary artery 

thrombi 

Thrombotic 

risk 

assessment 

Intravascular 

Ultrasound (IVUS) 

Segmentation and 

classification of vascular 

lesions, including thrombi 

Nakayama et 

al. (2023) [39] 

Article Deep vein thrombosis 

(DVT) in the popliteal 

vein 

Direct 

thrombosis 

detection 

B-mode ultrasound 

imaging (stationary 

and portable 

ultrasound 

diagnostic 

equipment) 

Classification of ultrasound 

images as "Satisfactory," 

"Moderately Satisfactory," or 

"Unsatisfactory" 

Moon et al. 

(2023) [40] 

Conference 

paper 

Carotid artery blood 

clot formation 

Thrombotic 

risk 

assessment 

Laser-Generated 

Focused 

Ultrasound (LGFU) 

Predicting blood clot 

thickness in the carotid artery 

Huang et al. 

(2024) [41] 

Article Thromboembolism 

detection 

Direct 

thrombosis 

detection 

B-mode ultrasound 

imaging of femoral 

vein 

Detecting Spontaneous Echo 

Contrast (SEC) associated 

with thromboembolism risk 

Table 2. Descriptive data on the particular DL characteristics (models, validation methods, and performance metrics) presented in 

each of the papers included in the scoping review. 
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Author (year) RQ5. What DL models are used? RQ6. What DL validation 

methods are employed? 

RQ7. What performance metrics 

are reported for DL approaches? 

Gerber et al. 

(2000) [20] 

Artificial Neural Network (ANN) 

with statistical texture analysis 

Leave-one-out cross-

validation 

Classification accuracy: 66% 

(ANN) 

Kyriacou et al. 

(2005) [21] 

Probabilistic Neural Network (PNN), 

Support Vector Machine (SVM), K-

Nearest Neighbour (KNN) 

Leave-one-out cross-

validation 

Best diagnostic yield: 67% (SVM), 

62% (PNN), 56% (KNN) 

Strzelecki et 

al. (2006) [22] 

Feedforward ANN, Network of 

Synchronized Oscillators (SON) 

Training/Test set (108/55) Classification accuracy: 91% 

(ANN), Segmentation accuracy: 

97% (SON), 95% (ANN) 

Dahabiah et al. 

(2007) [23] 

Feedforward ANN including a two-

layer ANN with sigmoid and linear 

activation functions 

Experimental validation for 

fuzzy similarity retrieval 

precision 

Fuzzy similarity, Euclidean 

distance, and retrieval precision are 

evaluated 

Sun et al. 

(2014) [24] 

ANN with grey level co-occurrence 

matrix (GLCM)-based texture 

analysis 

Five radiologists 

independently evaluated 

images in a blind study 

Sensitivity: 95.5%, Specificity: 

97.0%, Accuracy: 96.6%, AUC: 

0.932 

Smistad & 

Løvstakken 

(2016) [25] 

Deep Convolutional Neural Network 

(CNN) based on AlexNet 

Leave-one-subject-out cross-

validation 

Accuracy: 94.5% (femoral vessels), 

96% (carotid artery vessels) 

Jun et al. 

(2017) [26] 

Deep Feed-Forward Neural Network 

(FFNN) 

10-fold cross-validation AUC: 0.87, Specificity: 78.31%, 

Sensitivity: 79.02% 

Tanno et al. 

(2018) [27] 

Dual-task convolutional neural 

network (CNN) 

Training/Validation/Test set 

(60/20/20) 

F1-score: 91% (vein 

compressibility), 78% (landmark 

detection) 

Jun et al. 

(2019) [28] 

Feed-Forward Neural Network 

(FNN), K-Nearest Neighbour 

(KNN), Random Forest (RF), 

Convolutional Neural Network 

(CNN) 

5-fold cross-validation AUC: 0.911 (CNN), 0.844–0.859 

(FNN, KNN, RF), Sensitivity: 

87.31% (CNN), Specificity: 82.81% 

(CNN) 

Cao et al. 

(2020) [29] 

AlexNet (a CNN for classification), 

Fully Convolutional Networks (FCN) 

for segmentation 

Accuracy assessment for 

classification tasks, mean 

Intersection-over-Union (IoU) 

for segmentation 

Classification accuracy: 97.67%, 

Segmentation mean IoU: 0.8523 

Cao et al. 

(2020) [30] 

Convolutional Neural Network 

(CNN) based on MatConvNet 

framework, using VGGNet for 

classification 

Training/Test set (70/30) Accuracy: 73.4%, Sensitivity: 

69.2%, Specificity: 71.4%, AUC: 

0.7143 (for best vulnerability index 

classification point at 1.716) 

Johnstonbaugh 

et al. (2020) 

[31] 

Deep learning architecture using an 

atrous Nyquist Convolution and a 

differentiable spatial-to-numerical 

transformer (DSNT), while 

combining design elements of U-net 

and ResNet 

Training/Test set (80/20). 

Performance compared against 

conventional beamforming 

Mean Localization Error: <30 

microns (SD 20.9 microns) for 

targets <40 mm depth, 1.06 mm 

(SD 2.68 mm) for targets 40–60 

mm depth 

Bai et al. 

(2021) [32] 

Dense Multireceptive Field 

Convolutional Neural Network 

(DMRF-CNN) 

Training/Test set (70/30) Accuracy: ~95%, Precision: ~94% 

(based on Figure 7) 

Kainz et al. 

(2021) [33] 

Convolutional Neural Network 

(CNN) 

Training/Validation set 

(90/10), External Validation 

set (83 subjects) 

Sensitivity: 0.82-0.96, Specificity: 

0.70-0.82, Positive Predictive Value 

(PPV): 0.65-0.89, Negative 

Predictive Value (NPV): 0.98-0.99, 

Accuracy: 0.75-0.83, AUC: 0.77-

0.87 
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Author (year) RQ5. What DL models are used? RQ6. What DL validation 

methods are employed? 

RQ7. What performance metrics 

are reported for DL approaches? 

Hernanda et al. 

(2022) [34] 

UNet-ResNet (ResNet-34 as an 

encoder for UNet) 

Intersection-over-Union (IoU) 

and Dice Loss 

IoU: 84.50%, Dice Loss: 0.0857 

(for UNet-ResNet) 

Leblanc et al. 

(2022) [35] 

Mask-RCNN for artery 

segmentation, CNN for out-of-plane 

translation prediction 

5-fold cross-validation Absolute Mean Error: 0.28 ± 0.28 

mm, Median Drift Error: 8.98% 

Lei et al. 

(2022) [36] 

Deep Complex Convolutional Neural 

Network (DCCNN) 

Comparison with traditional 

velocimetry methods (High-

Pass Filter (HPF) and Singular 

Value Decomposition (SVD)) 

Normalized Root Mean Square 

Error (NRMSE): reduced by 

47.20% (comp. to HPF) and 

45.45% (comp. to SVD), Goodness-

of-fit (R²): improved by 5.64% 

(comp. to HPF) and 3.36% (comp. 

to SVD), Running time: reduced by 

82.10% (comp. to HPF) and 

21.11% (comp. to SVD) 

Olivier et al. 

(2023) [37] 

Deep Convolutional Neural Network 

(CNN) with 8 or 10 convolutional 

layers, 3-4 down-sampling 

operations, and a feature fusion 

approach 

8-fold cross-validation on 

three different dataset splits 

(DB1-3) 

Accuracy: 0.774 (best on DB1 + 

fusion + 4 down-sampling), 0.647 

(DB1 & 2 + fusion + 3 down-

sampling), 0.632 (DB1 & 2 & 3 + 

only image + 4 down-sampling) 

Meng et al. 

(2023) [38] 

Dilated attention U-Net for 

segmentation, ResNet18 for lesion 

classification 

5-fold cross-validation Dice Similarity Coefficient (DSC): 

79.21% (thrombi segmentation), 

F1-score: 96.42% (thrombi 

detection) 

Nakayama et 

al. (2023) [39] 

ResNet101 - Convolutional Neural 

Network (CNN) 

5-fold cross-validation Classification accuracy: 0.76 

(portable) and 0.73 (stationary), 

AUC: 0.89 (portable) and 0.88 

(stationary) 

Moon et al. 

(2023) [40] 

Multi-Modal Deep Learning model 

with CNNs for 1D and 2D feature 

extraction 

Cross-entropy loss Precision: 0.97, Sensitivity: 0.97, 

F1-score: 0.97, Accuracy: 0.96, 

AUC: 0.99 

Huang et al. 

(2024) [41] 

Multisequence CNN with ResNetv2 

backbone and soft attention 

Training/Test set (80/20) AUC: 0.74, Sensitivity: 0.73, 

Specificity: 0.68 (with soft 

attention) 

Table 3. Details about the used datasets and the challenges/limitations presented in each of the papers included in the scoping 

review. 

Author (year) RQ8. What datasets are used and if any 

are available? 

RQ9. What challenges or limitations are identified in the 

proposed DL? 

Gerber et al. 

(2000) [20] 

18 TEE images (9 tumour, 9 thrombi). Not 

publicly available. 

- ANN struggled with cases where tumours and thrombi had 

similar echogenic patterns.  

- Small dataset.  

- Lack of standardized echocardiographic settings. 

Kyriacou et al. 

(2005) [21] 

274 ultrasound images (137 symptomatic, 

137 asymptomatic). Not publicly available. 

- Difficult segmentation due to plaque edges blending with 

blood and acoustic shadows. 

- The diagnostic yield was lower than texture-based 

approaches. 

Strzelecki et 

al. (2006) [22] 

163 annotated echocardiograms (91 

thrombi, 28 benign and 44 

malignant tumours), 256 grey levels 

bitmap images, 640x480 pixels. Private 

dataset. 

- Ultrasound artifacts. 

- Training dependence. 

- Subjectivity in annotations. 
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Author (year) RQ8. What datasets are used and if any 

are available? 

RQ9. What challenges or limitations are identified in the 

proposed DL? 

Dahabiah et al. 

(2007) [23] 

US images of VT collected for indexing 

and retrieval. Not publicly available. 

- High uncertainty in VT characterization. 

- Operator dependency in US interpretation. 

- Need for a large, annotated dataset for ANN training. 

- Variability in echogenicity characterization. 

Sun et al. 

(2014) [24] 

650 TEE images from 130 patients with 

atrial fibrillation. Not publicly available. 

- High false-positive rate with TEE. 

- Lower accuracy in junior radiologists without the proposed 

solution. 

- Manual selection of region of interest may introduce human 

error. 

Smistad & 

Løvstakken 

(2016) [25] 

12,804 subimages from 15 subjects. Not 

publicly available. 

- Vessel model assumes elliptical shape, which is more suitable 

for arteries than veins. 

- No consideration for rotated vessels. 

- The model is trained only in specific anatomical regions, 

limiting generalizability. 

Jun et al. 

(2017) [26] 

12,325 IVUS images from 100 patients, 

co-registered with OCT images. Not 

publicly available. 

- IVUS has lower resolution than Optical Coherence 

Tomography (OCT), making TCFA detection challenging.  

- The model relies on feature extraction rather than direct 

image classification. 

Tanno et al. 

(2018) [27] 

1150 ultrasound videos (100 to 200 

frames) from 115 healthy volunteers. Not 

publicly available. 

- Limited dataset diversity. 

- Challenges in generalizing to all vein landmarks. 

- Domain shift across different ultrasound devices. 

Jun et al. 

(2019) [28] 

12,325 IVUS images from 100 patients, 

co-registered with OCT images. Not 

publicly available. 

- The dataset included only patients with plaques above a 

certain level, limiting generalizability. 

- While CNN achieved the best performance, it lacks 

interpretability compared to feature-based methods. 

- The study lacked a true control group of healthy patients. 

Cao et al. 

(2020) [29] 

2288 IVUS images (1144 normal and 1144 

bifurcated blood vessels) for classification. 

6360 IVUS images (1144 bifurcated and 

5216 normal blood vessels) for 

segmentation. Not publicly available. 

- Difficulty in segmenting bifurcated vessels. 

- Accuracy of boundary detection for precise 3D 

reconstruction. 

Cao et al. 

(2020) [30] 

3535 IVUS images from 23 atherosclerotic 

rabbit models. Not publicly available. 

- No well-established critical value for vulnerability index.  

- Limited dataset (from animal models, not human). 

- Need for human data validation to confirm applicability. 

Johnstonbaugh 

et al. (2020) 

[31] 

Simulated photoacoustic signals with 

20,300 different target positions in a tissue 

model (10-50 mm depth). No public 

dataset mentioned. 

- Decreased signal intensity at deeper tissue layers. 

- Optical scattering affecting photoacoustic signals.  

- Limitations in real-time clinical applicability. 

Bai et al. 

(2021) [32] 

699 vein US images from 211 subjects. 

Available upon request. 

- Challenges include high noise in vein ultrasound images.  

- Difficulty in identifying the compression point due to 

anatomical variations. 

- Need for further multi-centre validation. 

Kainz et al. 

(2021) [33] 

1500 ultrasound videos from 255 subjects. 

External validation on 83 patients (53 UK, 

30 Germany). Available upon request. 

- Operator dependency in free-hand ultrasound. 

- Domain shift between different ultrasound devices. 

- Small external validation sample sizes. 

- Clinical liability issues in replacing expert radiologists. 

Hernanda et al. 

(2022) [34] 

536 ultrasound images from phantom-

based human body simulations. No public 

dataset mentioned. 

- Vanishing gradient problem in deep networks (solved using 

ResNet encoder). 

- Difficulty in segmenting veins due to the presence of blood 

clots. 
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Author (year) RQ8. What datasets are used and if any 

are available? 

RQ9. What challenges or limitations are identified in the 

proposed DL? 

Leblanc et al. 

(2022) [35] 

111 tracked US videos (left/right femoral 

arteries) from 18 healthy volunteers. Not 

publicly available. 

- Needs further evaluation in patients with PAD. 

- Limited dataset. 

- It does not account for orientation. 

- Segmentation process is time-consuming. 

Lei et al. 

(2022) [36] 

Simulated ultrasound data generated using 

the Field II platform 

- Noise in clinical ultrasound data affects generalization.  

- Need for large-scale real patient datasets to improve real-

world applicability. 

- Blood flow patterns in complex cases (e.g., turbulence, 

vascular stenosis) require further testing. 

Olivier et al. 

(2023) [37] 

US images from 178 patients and 3 

different vendors (63, 102, 13 patients to 3 

splits) gathered from EDITH multi-

modality database. Not publicly available. 

- Model performance varies across databases. 

- Fusion of clinical data with images only improved accuracy 

with specific model architectures. 

- Standardized ultrasound devices and acquisition settings are 

needed for better reliability. 

Meng et al. 

(2023) [38] 

5,089 IVUS images from 100 patients. Not 

publicly available. 

- Limited dataset size (100 patients), single-centre study, and 

need for multi-centre validation. 

- Model refinement is needed for high-risk lesion stratification. 

Nakayama et 

al. (2023) [39] 

128,494 US images from stationary and 

46,338 from portable equipment (20 

subjects). Dataset is not publicly available. 

- The dataset was limited to healthy individuals. 

- Performance needs validation in patients with actual DVT. 

Moon et al. 

(2023) [40] 

Self-produced dataset (1280 waveforms 

(1D) for training, 201 frequency spectra 

(2D) for validation) 

- The experiment was conducted on self-produced data, 

requiring further validation for clinical application. 

- Additional research needed to confirm clinical significance. 

Huang et al. 

(2024) [41] 

801 archival ultrasound acquisitions along 

the femoral vein from 201 patients. 

Publicly available at GitHub. 

(https://github.com/Ouwen/automatic-

spontaneous-echo-contrast). 

- SEC detection requires expertise, is not routinely reported, 

and has challenges in achieving perfect agreement among 

experts. 

- Limited large-scale evidence for treatment decisions based on 

SEC. 

 

Figure 2 illustrates the distribution of retrieved unique papers (green bars) and finally included papers (orange bars) 

over time, spanning from 1997 to 2024. The number of retrieved papers represents all relevant studies identified, whereas 

the included papers indicate those that met the selection criteria for our systematic analysis. The trend shows a significant 

increase in research activity in the field, particularly after 2015, with a rapid rise in publications from 2020 onward. This 

reflects the growing interest in deep learning and machine learning applications for thrombosis detection and risk 

assessment using ultrasound imaging. While the number of retrieved papers surged in recent years, only a fraction was 

ultimately included during the selection process. The peak in 2023 suggests an increasing focus on this topic, aligning 

with advancements in AI-driven medical imaging technologies. 

https://github.com/Ouwen/automatic-spontaneous-echo-contrast
https://github.com/Ouwen/automatic-spontaneous-echo-contrast
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Figure 2. Trend of retrieved and included papers for DL-based thrombosis assessment using US imaging. 

The distribution of the included papers by publication type—journal articles (55%) and conference papers (45%)—

is presented in Figure 3. Out of the total selected studies, 12 papers were published in journals, while 10 papers were 

presented at conferences. The relatively balanced distribution indicates that both journal and conference publications 

contributed somewhat equally to research on deep learning-based thrombosis detection and risk assessment using 

ultrasound imaging. Journals provide comprehensive and peer-reviewed studies, whereas conferences showcase cutting-

edge developments and emerging trends in the field. 

 

Figure 3. Distribution of included papers by publication type (journal vs. conference papers). 

Figure 4 illustrates the primacy clinical focus of studies examined in the included publications. The distribution is 

as follows: 

− Venous thrombosis (45%) – Representing the largest portion, 10 studies focused on thrombosis in veins, 

including deep vein thrombosis (DVT) and pulmonary embolism (PE). 

− Arterial thrombosis (41%) – 9 studies examined arterial thrombotic conditions, including coronary artery 

disease, carotid thrombosis, and aortic thrombosis. Some of these studies also assessed plaque vulnerability, 

which is closely linked to thrombosis risk. 
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− Cardiac thrombosis (14%) – 3 studies investigated intracardiac thrombi, including left atrial and left atrial 

appendage (LAA) thrombi. 

Additional studies focused on vascular conditions indirectly related to thrombosis detection, such as carotid 

atherosclerotic plaque characterization, iliac vein compression, and peripheral artery disease. These studies primarily 

assess the risk of thrombosis rather than detecting an existing thrombus. 

The relatively balanced focus on venous and arterial thrombosis highlights the versatility of deep learning models in 

various vascular conditions. However, cardiac thrombosis remains a smaller research area, particularly in earlier studies 

(before 2014). 

 

Figure 4. Distribution of primary clinical focus in included papers. 

Figure 5 illustrates the distribution of the clinical relevance of the included studies in relation to thrombosis detection 

and risk assessment. The studies were categorized into the following groups: 

− Direct thrombosis detection (10 studies, 46%) – These studies specifically focused on identifying thrombi in 

veins, arteries, or cardiac chambers using ultrasound imaging and deep learning techniques. 

− Thrombotic risk assessment (8 studies, 36%) – These studies aimed to evaluate thrombotic risk factors, such as 

vulnerable plaques, vessel abnormalities, and blood flow characteristics, which may contribute to thrombosis 

formation. 

− Indirect thrombosis assessment (2 studies, 9%) – These studies examined conditions that are indirectly linked to 

thrombosis, such as iliac vein compression syndrome (IVCS), which can predispose patients to deep vein 

thrombosis. 

− Potential application for thrombotic risk (2 studies, 9%) – These studies primarily focused on vascular structures, 

such as blood vessel segmentation, which could serve as a supporting tool for thrombotic risk evaluation. 

The distribution highlights that the majority of studies (46%) directly targeted thrombus detection, while a significant 

proportion (36%) were dedicated to assessing risk factors associated with thrombosis development. The remaining 

studies focused on supporting diagnostic capabilities and related vascular conditions, which could contribute to 

advancements in thrombosis prediction and prevention. 
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Figure 5. Distribution of clinical relevance to thrombosis in the included studies. 

Figure 6 presents the distribution of ultrasound imaging modalities used in deep learning-based thrombosis detection 

and/or risk assessment studies. The number of papers utilizing each modality is shown, highlighting the dominant 

imaging techniques: 

− B-mode Ultrasound Imaging (10+ papers) – The most used modality, applied in vein compressibility analysis 

for DVT detection, arterial plaque segmentation, and general thrombus identification. 

− Doppler Ultrasound (1 paper) – Less frequently used, but valuable for assessing carotid blood flow velocity, 

contributing to thrombotic risk prediction. 

− Transesophageal Echocardiography (TEE) (3 papers) – Primarily used for cardiac thrombus detection, 

particularly in left atrial (LA) and left atrial appendage (LAA) thrombi. 

− Intravascular Ultrasound (IVUS) (5 papers) – Applied in arterial thrombosis studies, enabling detailed imaging 

of arterial walls, plaque characterization, and vulnerable lesion detection. 

− Specialized Imaging Modalities (2 papers) – Includes photoacoustic imaging (PAI) and laser-generated focused 

ultrasound (LGFU), which provide enhanced visualization of vascular structures and thrombosis features. 

The predominance of B-mode ultrasound underscores its role as the primary imaging technique for deep learning 

applications in thrombosis detection. Other modalities provide specialized diagnostic advantages, supporting risk 

assessment and thrombosis characterization in specific vascular conditions. 
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Figure 6. Distribution of US imaging modalities used in DL studies for thrombosis assessment. 

Figure 7 presents the distribution of prediction tasks in deep learning models applied to thrombosis assessment using 

ultrasound imaging. The studies are categorized into three main task types: 

− Classification Tasks (57%) – The majority of models focus on classification-based predictions, such as 

distinguishing between thrombi and tumours, vulnerable and stable plaques, or identifying specific thrombotic 

conditions. 

− Segmentation Tasks (24%) – These models are designed for automatic segmentation of vascular structures, such 

as blood vessels, thrombi, and plaques, allowing for precise localization and quantification. 

− Hybrid Tasks (19%) – Some studies employ a combination of classification and segmentation, integrating 

detailed structural analysis with predictive modelling to enhance diagnostic capabilities. 

The prevalence of classification-based tasks highlights the importance of automated thrombus identification, while 

segmentation plays a crucial role in detailed structural analysis for medical imaging applications. 

 

Figure 7. Distribution of prediction tasks in DL-based thrombosis assessment. 
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Figure 8 shows the distribution of different deep learning model types applied in thrombosis assessment using 

ultrasound imaging. The models are categorized into five main groups: 

− Standard CNN-based Models (35%) – The most common approach, utilizing conventional convolutional neural 

networks (CNNs) for feature extraction and classification. 

− ANN-based Models (26%) – Includes various artificial neural networks (ANNs), such as feedforward ANN, 

probabilistic neural networks (PNN), and other statistical ANN-based techniques. 

− Advanced CNN-based Models (17%) – Encompasses more complex architectures, including ResNet, and multi-

modal CNN approaches that enhance performance. 

− Segmentation-focused Models (13%) – Includes U-Net, Mask-RCNN, and similar deep learning architectures 

designed for precise segmentation of thrombi and vascular structures. 

− Other Models (9%) – Covers alternative machine learning methods such as random forests, support vector 

machines (SVMs), or hybrid approaches. 

The dominance of CNN-based models reflects the strong reliance on deep learning for feature extraction and pattern 

recognition in ultrasound-based thrombosis detection, while segmentation-focused models are crucial for detailed 

anatomical and thrombus visualization. 

 

Figure 8. Distribution of deep learning model types used in thrombosis assessment. 

Finally, the distribution of validation methods used in deep learning models is shown in Figure 9. The most 

frequently employed approach is cross-validation (41%), where datasets are split into multiple folds for training and 

testing, ensuring robust model generalization. The training/test set method (32%) is also commonly used, dividing the 

dataset into separate training and test sets to evaluate model performance on unseen data. Additionally, 27% of studies 

utilize other validation methods, including external dataset validation, cross-entropy loss or expert comparison studies. 

The dominance of cross-validation highlights its effectiveness in enhancing model robustness and mitigating overfitting, 

while training/test set approaches remain widely used for straightforward performance assessment. Only two studies 

within the included literature have progressed beyond algorithm development to clinical evaluation settings. 

Oppenheimer et al. [42] conducted a study to assess the feasibility of AI-assisted DVT triage using AutoDVT [27], 

reporting 100% sensitivity and 95.12% specificity in scans obtained by non-specialists, and a 53% reduction in the need 

for formal duplex ultrasound imaging. Similarly, Nothnagel and Aslam [43] evaluated AI-guided point-of-care 

ultrasound (POCUS) [33] among older patients in a remote triage scenario, finding that 91% of complete scans were 

diagnostically sufficient and enabled clinicians to triage 53% of patients as low risk without further imaging. 
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Figure 9. Distribution of validation methods used in deep learning models to evaluate their performance. 

4. Discussion 

This scoping review highlights the increasing role of deep learning (DL) in thrombosis detection and risk assessment 

using ultrasound (US) imaging. Across the 22 included studies, various DL architectures—ranging from convolutional 

neural networks (CNNs) to hybrid models integrating clinical data—demonstrated significant potential for classification, 

segmentation, thrombus risk prediction, and automation of vascular ultrasound analysis. These findings reinforce the 

growing impact of AI-driven diagnostic tools in enhancing non-invasive thrombus detection, reducing operator 

dependency, and improving clinical decision-making. 

4.1. Summary of Key Findings 

This scoping review aimed to comprehensively analyse deep learning (DL) approaches for thrombosis detection and 

risk assessment via ultrasound imaging, focusing on their methodological strengths, clinical applicability, and 

limitations. Several key findings emerged from the synthesis of included studies. 

Firstly, convolutional neural networks (CNNs), U-Net, ResNet, and artificial neural networks (ANNs) were 

identified as the predominant deep learning architectures applied in ultrasound-based thrombosis diagnostics. CNNs 

demonstrated superior diagnostic performance in prediction tasks including thrombus classification, vessel 

segmentation, and thrombus localization. Notably, the CNN-based AutoDVT [42] achieved exceptional sensitivity 

(100%) and specificity (95.12%) in identifying proximal deep vein thrombosis, underscoring their clinical utility and 

ability to streamline diagnostic processes by significantly reducing dependency on expert interpretation. 

Secondly, significant heterogeneity was observed in dataset characteristics, model validation strategies, and 

performance metrics used across reviewed studies. This variation highlights a critical gap regarding standardization, 

making direct comparisons challenging. Despite this, studies consistently reported high sensitivity and specificity, 

indicating robust DL capabilities in accurately identifying thrombosis across venous, arterial, and cardiac domains 

[34,36,38]. 

Thirdly, ultrasound imaging modalities such as B-mode ultrasound, Doppler ultrasound, intravascular ultrasound 

(IVUS), and transesophageal echocardiography (TEE) were successfully integrated with DL algorithms. B-mode 

ultrasound was particularly prevalent due to its accessibility and real-time diagnostic capability. DL approaches utilizing 

IVUS achieved high accuracy in detecting thrombotic lesions, significantly contributing to cardiovascular risk 

assessment and lesion classification [36,38]. 

Moreover, DL-driven ultrasound assessments showed considerable promise in mitigating operator dependency and 

variability associated with traditional ultrasound interpretation. AI-guided point-of-care ultrasound (POCUS) techniques 
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particularly showcased high sensitivity and specificity, emphasizing their potential for widespread application in 

emergency and remote care settings [39,42,43]. 

Finally, despite these advancements, persistent challenges were identified including limited availability of large-

scale, publicly accessible datasets, variability in image quality, and the need for explainable AI models to enhance 

clinical acceptance. Addressing these challenges through future research and collaborative efforts would significantly 

enhance the generalizability, robustness, and practical adoption of DL models in clinical settings [37,40,41]. 

Collectively, these key findings illustrate the promising potential and current limitations of DL-based ultrasound 

imaging in thrombosis detection and risk assessment, laying a strong foundation for future research aimed at enhancing 

clinical diagnostic capabilities and patient outcomes. 

4.2. Comparison with Existing Literature 

The findings of this scoping review align with and extend previous research on deep learning (DL) and machine 

learning (ML) applications in vascular imaging and thrombosis detection. Prior bibliometric analyses have highlighted 

the increasing role of AI in vascular surgery, with a focus on carotid artery disease, abdominal aortic aneurysms, and 

peripheral arterial disease [8]. The present study reinforces these trends by demonstrating that AI-driven ultrasound 

imaging plays a crucial role in thrombosis detection and risk assessment. 

In venous thrombosis detection, previous studies acknowledged the operator dependency of compression ultrasound 

techniques and the variability in human interpretation [15]. AI-assisted point-of-care ultrasound (POCUS) has been 

explored as a solution, but most earlier studies lacked clinical validation. The reviewed studies demonstrated that AI 

models such as AutoDVT significantly improve DVT detection, achieving a sensitivity of 100% and specificity of 91%, 

thus reducing the need for formal duplex scans [42]. This aligns with prior research advocating for automated, expert-

independent DVT diagnostics [16]. 

For arterial thrombosis, earlier studies explored AI applications in detecting vulnerable plaques using intravascular 

ultrasound (IVUS) but relied heavily on manual feature extraction and semi-automated classification [14]. The present 

review found that CNN-based approaches for arterial thrombosis detection achieved an AUC of 0.911, surpassing 

conventional methods [28]. The transition from manual feature-based models to fully automated deep learning 

segmentation and classification systems is a significant advancement, reducing subjectivity in plaque stability 

assessment and improving risk prediction for acute coronary syndrome (ACS). 

In cardiac thrombosis detection, transesophageal echocardiography (TEE) has long been considered the gold 

standard, but manual interpretation poses limitations in diagnostic efficiency and interobserver variability [9]. The 

reviewed studies show that AI-assisted CAD systems for TEE imaging enhance thrombus detection accuracy, 

particularly for left atrial thrombi [24]. Furthermore, DL models using texture-based feature extraction demonstrated the 

ability to differentiate between intracardiac thrombi and tumours, a challenge previously addressed through subjective 

expert evaluation [22]. 

Compared to existing literature, this scoping review uniquely consolidates DL applications across venous, arterial, 

and cardiac thrombosis using ultrasound imaging, highlighting the evolution from semi-automated models to fully AI-

driven workflows. The findings reinforce the growing role of AI in real-time, remote, and non-specialist-assisted 

diagnostics [15,16]. Future research should emphasize large-scale validation, clinical integration, and regulatory 

approval to ensure AI-driven thrombosis detection is effectively incorporated into clinical practice. 

4.3. Strengths and Clinical Implications 

This review identifies several notable strengths of DL-based thrombosis detection using US imaging: 

1. Increased diagnostic accuracy: DL-based segmentation and classification models achieved high sensitivity, 

specificity, and AUC scores, suggesting strong potential for clinical adoption [28,44]. 

2. Reduction in operator dependency: AI-guided imaging allows non-experts to perform POCUS assessments, 

reducing the burden on radiologists and vascular specialists [33]. 

3. Efficiency and cost reduction: Automated classification could streamline diagnostic workflows, reducing the 

need for unnecessary imaging studies and shortening diagnostic delays [33]. 
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4. Potential for remote and point-of-care applications: AI-enabled handheld US devices could expand thrombosis 

screening capabilities in rural and low-resource settings, improving early detection and intervention [42]. 

4.4. Limitations and Challenges 

Despite the promising findings, several limitations remain that must be addressed in future work: 

− Dataset availability and bias: Many studies relied on proprietary or small-scale datasets, limiting the 

generalizability of their findings. The lack of open-access, standardized thrombosis imaging datasets hinders 

broader AI development. 

− Lack of prospective clinical validation: While most studies reported high accuracy in retrospective datasets, real-

world clinical validation remains limited. Further prospective trials are needed to assess AI performance in 

diverse patient populations. 

− Computational requirements and model interpretability: Complex DL models often require significant 

computational resources, making them less accessible in low-resource clinical settings. Additionally, the "black 

box" nature of deep learning models raises concerns about explainability and clinical trust. 

− Regulatory and ethical considerations: AI deployment in thrombosis diagnostics faces regulatory challenges, 

including FDA/EMA approval and ensuring compliance with medical AI guidelines. 

5. Conclusions 

This scoping review examined the role of deep learning (DL) in thrombosis detection and risk assessment using 

ultrasound (US) imaging across venous, arterial, and cardiac domains. The 22 included studies demonstrated that DL 

models—particularly convolutional neural networks (CNNs), U-Net, and ResNet—consistently achieved high 

performance in thrombus classification, vessel segmentation, and risk prediction tasks. These approaches enhance 

diagnostic accuracy, reduce operator dependency, and enable automation in vascular ultrasound analysis. 

In venous thrombosis, DL methods showed strong capabilities in detecting deep vein thrombosis (DVT) and 

evaluating vein compressibility, with AI-assisted point-of-care ultrasound (POCUS) extending diagnostic access to 

remote and emergency settings. For arterial thrombosis, DL algorithms integrated with intravascular ultrasound (IVUS) 

enabled accurate detection of high-risk atherosclerotic plaques, while 3D reconstruction tools improved vascular lesion 

assessment. In cardiac applications, DL-enhanced transesophageal echocardiography (TEE) facilitated the detection and 

classification of intracardiac thrombi, supporting stroke prevention and treatment planning. 

Despite these advances, key challenges remain, including the need for large-scale, annotated ultrasound datasets, 

improved model explainability, and real-world clinical validation. Future research should focus on developing 

interpretable, ethically aligned AI systems that can be seamlessly integrated into existing diagnostic workflows. 

Ultimately, AI-enhanced ultrasound offers a scalable and cost-effective solution for improving diagnostic precision 

and patient outcomes in thrombosis care. As regulatory frameworks and technological standards evolve, the adoption of 

trustworthy and clinically validated DL models will be essential to achieving widespread, equitable implementation of 

AI in vascular medicine. 
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