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Abstract

Objective: Thrombosis, the formation of clots in blood vessels, poses serious health risks such as pulmonary embolism
and post-thrombotic syndrome. Ultrasound (US) imaging is widely used for its safety and real-time capability but suffers
from operator dependency. This scoping review explores the application of deep learning (DL) methods to improve
thrombosis detection and risk assessment using US imaging, focusing on venous, arterial, and cardiac contexts.

Methods: A scoping review was conducted in accordance with PRISMA-ScR methodology. Searches in PubMed and
Scopus combined MeSH terms and keywords related to DL, ultrasound, and thrombosis. Studies were eligible if they
applied DL to US imaging for thrombus detection, classification, segmentation, or risk prediction. Only original, English-
language research using vascular US modalities (e.g., B-mode, Doppler, Intravascular Ultrasound [IVUS], or
Transesophageal Echocardiography [TEE]) was included. Screening and full-text review were conducted independently,
and data were extracted using a standardized charting form.

Results: From 233 records, 22 studies met the inclusion criteria. Convolutional Neural Networks (CNNs), U-Net,
Residual Neural Network (ResNet), and Artificial Neural Networks (ANNs) were commonly used for classification,
segmentation, and thrombus localization. DL models supported Deep Vein Thrombosis (DVT) diagnosis via vein
compressibility analysis as well as Point-of-Care Ultrasound (POCUS). Arterial thrombosis detection leveraged plaque
segmentation and [IVUS-based vessel reconstruction, while cardiac applications used TEE to differentiate thrombi from
tumours. Cross-validation and external datasets were frequently used, with sensitivity, specificity, accuracy, and Area
Under the Curve (AUC) among reported metrics.

Conclusion: DL-based methods have shown substantial potential to improve diagnostic accuracy, automate image
analysis, and support clinical decision-making in thrombosis management. Despite these advances, challenges such as
limited datasets, image quality variability, and a lack of multi-centre validation remain. Future research should focus on
real-world clinical integration and the development of standardized, publicly available datasets.
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1. Introduction

Thrombosis [1], the pathological formation of blood clots within blood vessels, remains a major global health
concern due to its association with life-threatening conditions such as pulmonary embolism (PE), stroke, myocardial
infarction, and chronic post-thrombotic syndrome. Early detection and accurate risk stratification are critical for
preventing severe complications and improving patient outcomes. Among imaging modalities, ultrasound (US) has long
been established as the preferred method for diagnosing vascular conditions, particularly due to its real-time capabilities,
portability, non-invasiveness, and absence of ionizing radiation [2,3].

Despite its advantages, the accuracy and reliability of US imaging are often constrained by operator dependency,
variability in interpretation, and image quality limitations, especially in deep or complex anatomical structures [4]. These
limitations underscore the need for automated and objective interpretation tools that can assist clinicians in diagnosis
and risk assessment tasks. In this context, Artificial Intelligence (Al), and more specifically Deep Learning (DL), has
emerged as a transformative tool in medical imaging, capable of enhancing image analysis, enabling real-time decision
support, and reducing inter-observer variability [5-7].



While individual studies and reviews have demonstrated promising applications of artificial intelligence (Al) and
machine learning (ML) in vascular medicine, a focused synthesis on deep learning (DL) methods specifically for
thrombosis detection and risk assessment using ultrasound (US) imaging remains absent. Several reviews have explored
Al applications in vascular surgery, cardiovascular disease risk prediction, and plaque characterization, often
emphasizing imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI), or invasive
angiography over ultrasound. For instance, a bibliometric analysis of Al in vascular surgery found notable progress in
predictive modelling and diagnostic tools but lacked thrombosis-specific implementations [8]. Similarly, reviews on
cardiovascular risk stratification using Al noted strong performance in predictive modelling but did not address thrombus
detection or use US imaging [9].

Other related works have explored Al-driven analysis of peripheral artery disease, cerebrovascular disease, and deep
vein thrombosis (DVT), often applying ML techniques to contrast-enhanced MRI or CT images [10]. While such
approaches demonstrate enhanced diagnostic capabilities, they fall short in terms of generalizability and practical
integration in real-time clinical settings, particularly for non-invasive US imaging. Studies applying DL to plaque
characterization using US—such as segmentation of intima-media thickness or vulnerable plaque detection—provide
insights relevant to thrombotic risk, but they rarely include thrombus classification or US-based risk assessment [11—
14].

More directly relevant literature on venous thromboembolism (VTE) prediction and embolism classification has
demonstrated that DL and ML models outperform traditional clinical scoring systems [15,16]. Nevertheless, challenges
such as limited dataset quality, high bias risk, lack of external validation, and a reliance on non-ultrasound modalities
remain common limitations [17,18]. In short, while related works show the potential of Al in vascular diagnostics, they
fall short of delivering an end-to-end framework for DL-based thrombosis detection using ultrasound.

To address these gaps, the present scoping review provides a consolidated and structured evaluation of DL
applications specific to thrombosis detection and risk assessment via US imaging. This includes analysis of clinical
applications, model architectures, validation strategies, and performance metrics reported in the literature. It aims to
serve as a resource for clinicians, researchers, and policymakers, guiding future Al development in this domain and
supporting real-world implementation of DL tools in thrombosis diagnostics. More specifically, this review focuses on
providing answers to the following research questions (RQs):

RQ1. What is the primary clinical focus of the study (i.e., thrombosis or related conditions)?

RQ2. How does the study contribute to thrombosis detection, risk assessment, or clinical decision-making in
thrombotic conditions?

RQ3. What ultrasound imaging method used (e.g., B-mode US, Doppler US)?

RQ4. What is the problem addressed by employing a DL. model on ultrasound images?

RQS5. What DL/ML models are used in thrombosis detection or risk assessment with ultrasound imaging?

RQ6. What validation methods have been employed to assess DL models?

RQ7. What performance metrics (e.g., sensitivity, specificity, accuracy) have been reported for DL approaches?

RQ8. What kind of datasets are being used, and whether the dataset is available?

RQY9. What challenges or limitations have been identified in proposed DL approaches?

2. Materials and methods

This work aims to perform a qualitative scoping review conducted to analyse and synthesize existing research on
the application of deep learning (DL) in thrombosis detection and risk assessment using ultrasound imaging. This review
follows the PRISMA-ScR methodology [19], ensuring a structured, transparent, and reproducible approach to the
identification, selection, and synthesis of relevant literature.

2.1.  Search Strategy

To identify relevant peer-reviewed publications, a systematic search strategy was designed using a combination of
Boolean operators, MeSH terms, and relevant keywords. The search was conducted in two primary electronic databases:



— PubMed (a key database for biomedical literature)
- Scopus (a multidisciplinary scientific database)

The search strings were carefully crafted to optimize the retrieval of relevant studies:

— PubMed Query:
("deep learning"[ Title/Abstract] OR "neural network"[Title/Abstract] OR "neural networks"[Title/Abstract]

OR "deep learning"[MeSH Terms] OR "Neural Networks, Computer"[MeSH Terms] OR (deep|Title/Abstract]
AND learning[Title/Abstract]) OR (neural|[Title/Abstract] AND network*[Title/Abstract])) AND
(ultrasound*| Title/Abstract] OR ultrasonic*| Title/Abstract] OR sonography|Title/Abstract] OR
ultrasonography|Title/Abstract] OR echography[Title/Abstract] OR ultrasonographic[ Title/Abstract] OR
echotomography][Title/Abstract] OR ultrasonography[MeSH Terms]) AND (thrombosis|[Title/Abstract] OR
thromboses[ Title/Abstract] OR thrombus| Title/Abstract] OR clot*[Title/Abstract] OR
atherothrombosis| Title/Abstract] OR thrombosis|MeSH Terms])

— Scopus Query:
TITLE-ABS-KEY ("deep learning" OR "neural network" OR "neural networks" OR (deep AND learning) OR
(neural AND network*)) AND TITLE-ABS-KEY (ultrasound* OR ultrasonic* OR sonography OR
ultrasonography OR echography OR ultrasonographic OR echotomography) AND TITLE-ABS-KEY
(thrombosis OR thromboses OR thrombus OR clot* OR atherothrombosis)

The search was conducted systematically, with no restrictions on publication year to ensure a comprehensive dataset

of relevant research.

2.2,

Eligibility Criteria

To ensure that only relevant studies were included, the following inclusion and exclusion criteria were established:

Inclusion Criteria:

1.

6.

Study Focus: The study must explore the use of DL models in thrombosis detection and/or risk assessment using
ultrasound imaging.

Application of Al: Research must focus on image acquisition, enhancement, segmentation, classification, thrombus
localization, blood flow analysis, risk prediction, or decision support using Al techniques.

Target Medical Condition: Studies must focus on medical conditions related to thrombosis, including but not limited
to venous thrombosis (e.g., deep vein thrombosis, pulmonary embolism), arterial thrombosis (e.g., carotid or
coronary thrombi, plaque rupture), and cardiac thrombosis (e.g., left atrial appendage thrombi, intracardiac masses).
Imaging Modality: The study must use vascular ultrasound (US) or Doppler ultrasound (DUS) as the primary
imaging modality, including B-mode US, compression US, intravascular ultrasound (IVUS), or transesophageal
echocardiography (TEE).

Publication Type: The study must be an original research article, published in peer-reviewed journals or conference
proceedings.

Language: Studies must be published in English.

Exclusion Criteria:

1.

Non-thrombosis or non-ultrasound studies (e.g., studies focusing solely on CT, MRI, or X-ray imaging without
ultrasound-based assessment).

Studies not involving AI/ML (e.g., manual interpretation, rule-based algorithms, or traditional statistical methods
without DL application).

Editorials, reviews, positions, opinion pieces, conference abstracts, or commentaries without substantive data
analysis.

Studies with incomplete Al methodology, such as missing model details, dataset descriptions, performance metrics,
or validation strategies.




5. Studies focusing exclusively on vascular diseases without thrombotic relevance (e.g., general atherosclerosis studies
without thrombus detection or risk assessment).

The eligibility screening process followed the PRISMA-ScR guidelines, with two independent reviewers assessing
each study based on the inclusion and exclusion criteria. The primary investigator (first author) performed the initial
screening, while the other (second author) reviewed the selections and resolved any discrepancies. Disagreements were
settled through discussion.

2.3. Selection of Sources

The study selection process was carried out in two phases to ensure the inclusion of relevant research aligned with
the objectives of this work:

1. Title and Abstract Screening:
— Two independent reviewers screened titles and abstracts of retrieved studies.
— Publications unrelated to DL in thrombosis detection or risk assessment using ultrasound imaging were
excluded.

— Any discrepancies were resolved through discussion.

2. Full-Text Review:
— A full-text screening was performed on shortlisted articles from the initial screening phase.
— Only original research papers directly addressing the research questions were included.

2.4. Data Extraction and Charting

A standardized data extraction form was developed to systematically collect key information from each included
study. The extracted data included:

General Study Information:
— Author(s), Year of Publication
— Type of Publication (Journal/Conference Paper)

Clinical Focus:
— Clinical primary focus (i.e., thrombosis or related conditions)
— Clinical relevance to thrombosis
— US Imaging Modality Used (e.g., B-mode US, Doppler US)

Al Model and Methodology:
— Al Model Used (e.g., CNN, ResNet, U-Net, RF, SVM)
— Type of Task (e.g., Classification, Segmentation)
— Validation Method (e.g., Cross-validation, External Validation)
— Performance Metrics (e.g., Sensitivity, Specificity, Accuracy, F1-Score, AUC)

Training Datasets:
— Dataset Size and Content
— Avalilability

Challenges and Limitations:
— Model Generalizability
— Interpretability Issues

2.5. Synthesis of Results



The extracted data were analysed to provide a comprehensive overview of Al-based thrombosis detection using
ultrasound imaging. Key findings include the prevalent use of CNN, U-Net, and ResNet models for classification and
segmentation tasks, with validation methods primarily relying on cross-validation and external dataset testing. The
review highlights that DVT and PE are the most studied thrombosis types, with performance metrics such as sensitivity,
specificity, accuracy, and AUC frequently reported. These individual characteristics, including them presented in
previous section, of each included publication are presented in tabular form. Computed summaries and graphical
representations of charted data frequencies are presented. Finally, the findings for each recognized type of thrombosis
are summarized and discussed.

3. Results

3.1. Selection of Relevant Sources

A total of 233 records were identified through PubMed (n=64) and Scopus (n=169) in August 2024. After removing
50 duplicates, 183 records underwent screening based on titles and abstracts. Of these, 120 were excluded for reasons
such as being literature reviews, editorials, non-English publications, or not being relevant to Al, thrombosis, or
ultrasound imaging. The remaining 63 full-text articles were assessed for eligibility, leading to the exclusion of 41 studies
due to topic misalignment, lack of focus on thrombosis detection, inaccessibility, or unavailability. In the final selection,
22 studies were included in the scoping review to ensure alignment with the research objectives. The source selection
process is shown in Figure 1.
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Figure 1. Source selection process from PubMed and Scopus search engines (PRISMA flowchart).



3.2. Characteristics of Sources and Synthesis of Results

The characteristics and data chart answering research question RQ1 to RQ9 for each of the 22 research papers
included in the scoping review are presented in Table 1, Table 2 and Table 3.

Table 1. Research papers included in the scoping review, their characteristics, the clinical primary focus, the relevance to
thrombosis, the US imaging method, and the DL problem addressed.

Author (year) Publication RQ1. What is the RQ2. What RQ3. What US RQ4. What is the problem
Type clinical primary is the imaging method addressed by employing a
focus? study’s used? DL model?
clinical
relevance to
thrombosis?
Gerber et al. Article Intracardiac thrombi, Direct Transesophageal Classification of intracardiac
(2000) [20] including LA and LAA  thrombosis Echocardiography = tumours and thrombi
detection (TEE)
Kyriacou et al. = Conference = Carotid atherosclerotic =~ Thrombotic = B-mode ultrasound = Classification of carotid
(2005) [21] paper plaque risk imaging plaques as symptomatic
assessment (unstable, associated with
stroke, TIA, or AF) or
asymptomatic
Strzelecki et Article Intracardiac thrombi Direct Echocardiography  Classification & segmentation
al. (2006) [22] thrombosis (cardiac ultrasound, = of intracardiac thrombi,
detection transesophageal) benign & malignant tumours
Dahabiah et Conference = Venous thrombosis Direct B-mode ultrasound = Echogenicity and
al. (2007) [23] | paper (VT), specifically deep | thrombosis imaging echostructure characterization
and superficial vein detection of venous thrombosis (VT)
thrombosis
Sun et al. Article Left atrial (LA) and left = Direct Transesophageal Detection of left atrial (LA)
(2014) [24] atrial appendage (LAA) = thrombosis Echocardiography  and left atrial appendage
thrombi detection (TEE) (LAA) thrombi
Smistad & Conference | Blood vessel Potential B-mode ultrasound = Segmentation of blood
Lovstakken paper segmentation application imaging vessels (position and size)
(2016) [25] for
thrombotic
risk
Jun et al. Conference = Coronary thrombosis Thrombotic  Intravascular Classification of thin-cap
(2017) [26] paper (thin-cap risk Ultrasound (IVUS)  fibroatheroma (TCFA) vs.
fibroatheroma) assessment non-TCFA
Tanno et al. Conference = Deep Vein Thrombosis = Direct B-mode Classification of vein
(2018) [27] paper (DVT) in the femoral thrombosis compression compressibility and
and popliteal veins detection ultrasound imaging = anatomical landmarks
Jun et al. Article Coronary thrombosis Thrombotic  Intravascular Classification of thin-cap
(2019) [28] risk Ultrasound (IVUS)  fibroatheroma (TCFA)
assessment
Cao et al. Conference = Coronary plaque Thrombotic = Intravascular Classification of normal vs.
(2020) [29] paper rupture leading to risk Ultrasound (IVUS)  bifurcated blood vessels and
thrombosis assessment segmentation of vessel walls
in order to 3D reconstruct the
segmented blood vessels
Cao et al. Article Atherosclerosis-related = Thrombotic Intravascular Prediction of vulnerable vs.
(2020) [30] plaque rupture & risk ultrasound (IVUS)  stable plaques
thrombosis assessment



Author (year) Publication RQ1. What is the RQ2. What RQ3. What US RQ4. What is the problem
Type clinical primary is the imaging method addressed by employing a
focus? study’s used? DL model?
clinical
relevance to
thrombosis?
Johnstonbaugh | Article Photoacoustic imaging | Potential Photoacoustic Localization of photoacoustic
et al. (2020) for vascular assessment = application imaging (PAI) (PA) wavefront origins in
[31] for combined with deep tissue for potential
thrombotic ultrasound vascular applications,
risk detection including deep vein
thrombosis (DVT)
Bai et al. Article Iliac Vein Compression = Indirect B-mode Detection of iliac vein
(2021) [32] Syndrome (IVCS) thrombosis compression compression points
assessment ultrasound imaging
Kainz et al. Article Deep Vein Thrombosis = Direct B-mode Predict the presence or
(2021) [33] (DVT) in the femoral thrombosis compression absence of DVT by analysing
and popliteal veins detection ultrasound imaging = vein compressibility
Hernanda et Conference = Deep Vein Thrombosis = Direct B-mode ultrasound = Semantic segmentation of
al. (2022) [34] | paper (DVT) thrombosis imaging venous areas in US images to
detection detect DVT
Leblanc etal. | Article Peripheral artery Indirect B-mode ultrasound = Predict out-of-plane
(2022) [35] disease (PAD) lesions  thrombosis imaging translation for stretched
(stenosis/thrombosis) assessment reconstruction of femoral
artery from 2D US
Lei et al. Conference  Carotid artery Thrombotic ~ Ultrasound Doppler = Estimation of carotid blood
(2022) [36] paper thrombosis and risk RF signals flow velocity
atherosclerotic plaque assessment
Olivier et al. Conference = Deep vein thrombosis Direct B-mode ultrasound = Predicting pulmonary
(2023) [37] paper (DVT) with prediction | thrombosis imaging embolism (PE) occurrence in
of associated detection patients with deep vein
pulmonary embolism thrombosis (DVT) using US
(PE) images and 5 clinical factors
Meng et al. Article Coronary artery Thrombotic  Intravascular Segmentation and
(2023) [38] thrombi risk Ultrasound (IVUS)  classification of vascular
assessment lesions, including thrombi
Nakayama et Article Deep vein thrombosis Direct B-mode ultrasound = Classification of ultrasound
al. (2023) [39] (DVT) in the popliteal = thrombosis imaging (stationary = images as "Satisfactory,"
vein detection and portable "Moderately Satisfactory," or
ultrasound "Unsatisfactory"
diagnostic
equipment)
Moon et al. Conference = Carotid artery blood Thrombotic ~ Laser-Generated Predicting blood clot
(2023) [40] paper clot formation risk Focused thickness in the carotid artery
assessment Ultrasound (LGFU)
Huang et al. Article Thromboembolism Direct B-mode ultrasound = Detecting Spontaneous Echo
(2024) [41] detection thrombosis imaging of femoral = Contrast (SEC) associated
detection vein with thromboembolism risk

Table 2. Descriptive data on the particular DL characteristics (models, validation methods, and performance metrics) presented in
each of the papers included in the scoping review.



Author (year)

RQS5. What DL models are used?

RQ6. What DL validation
methods are employed?

RQ7. What performance metrics
are reported for DL approaches?

Gerber et al.
(2000) [20]
Kyriacou et al.
(2005) [21]

Strzelecki et
al. (2006) [22]

Dahabiah et al.
(2007) [23]

Sun et al.
(2014) [24]

Smistad &
Lovstakken
(2016) [25]
Jun et al.
(2017) [26]
Tanno et al.
(2018) [27]

Jun et al.
(2019) [28]

Cao et al.
(2020) [29]

Cao et al.
(2020) [30]

Johnstonbaugh
et al. (2020)
[31]

Bai et al.
(2021) [32]

Kainz et al.
(2021) [33]

Artificial Neural Network (ANN)
with statistical texture analysis
Probabilistic Neural Network (PNN),
Support Vector Machine (SVM), K-
Nearest Neighbour (KNN)
Feedforward ANN, Network of
Synchronized Oscillators (SON)

Feedforward ANN including a two-
layer ANN with sigmoid and linear
activation functions

ANN with grey level co-occurrence
matrix (GLCM)-based texture
analysis

Deep Convolutional Neural Network
(CNN) based on AlexNet

Deep Feed-Forward Neural Network
(FFNN)

Dual-task convolutional neural
network (CNN)

Feed-Forward Neural Network
(FNN), K-Nearest Neighbour
(KNN), Random Forest (RF),
Convolutional Neural Network
(CNN)

AlexNet (a CNN for classification),
Fully Convolutional Networks (FCN)
for segmentation

Convolutional Neural Network
(CNN) based on MatConvNet
framework, using VGGNet for
classification

Deep learning architecture using an
atrous Nyquist Convolution and a
differentiable spatial-to-numerical
transformer (DSNT), while
combining design elements of U-net
and ResNet

Dense Multireceptive Field
Convolutional Neural Network
(DMRF-CNN)

Convolutional Neural Network
(CNN)

Leave-one-out cross-
validation
Leave-one-out cross-
validation

Training/Test set (108/55)

Experimental validation for
fuzzy similarity retrieval
precision

Five radiologists
independently evaluated
images in a blind study
Leave-one-subject-out cross-
validation

10-fold cross-validation

Training/Validation/Test set
(60/20/20)

5-fold cross-validation

Accuracy assessment for
classification tasks, mean
Intersection-over-Union (IoU)
for segmentation
Training/Test set (70/30)

Training/Test set (80/20).
Performance compared against
conventional beamforming

Training/Test set (70/30)

Training/Validation set
(90/10), External Validation
set (83 subjects)

Classification accuracy: 66%
(ANN)

Best diagnostic yield: 67% (SVM),
62% (PNN), 56% (KNN)

Classification accuracy: 91%
(ANN), Segmentation accuracy:
97% (SON), 95% (ANN)

Fuzzy similarity, Euclidean
distance, and retrieval precision are
evaluated

Sensitivity: 95.5%, Specificity:
97.0%, Accuracy: 96.6%, AUC:
0.932

Accuracy: 94.5% (femoral vessels),
96% (carotid artery vessels)

AUC: 0.87, Specificity: 78.31%,
Sensitivity: 79.02%

F1-score: 91% (vein
compressibility), 78% (landmark
detection)

AUC: 0.911 (CNN), 0.844-0.859
(FNN, KNN, RF), Sensitivity:
87.31% (CNN), Specificity: 82.81%
(CNN)

Classification accuracy: 97.67%,
Segmentation mean IoU: 0.8523

Accuracy: 73.4%, Sensitivity:
69.2%, Specificity: 71.4%, AUC:
0.7143 (for best vulnerability index
classification point at 1.716)

Mean Localization Error: <30
microns (SD 20.9 microns) for
targets <40 mm depth, 1.06 mm
(SD 2.68 mm) for targets 40—60
mm depth

Accuracy: ~95%, Precision: ~94%
(based on Figure 7)

Sensitivity: 0.82-0.96, Specificity:
0.70-0.82, Positive Predictive Value
(PPV): 0.65-0.89, Negative
Predictive Value (NPV): 0.98-0.99,
Accuracy: 0.75-0.83, AUC: 0.77-
0.87



Author (year)

RQS5. What DL models are used?

RQ6. What DL validation
methods are employed?

RQ7. What performance metrics
are reported for DL approaches?

Hernanda et al.
(2022) [34]
Leblanc et al.
(2022) [35]

Lei et al.
(2022) [36]

Olivier et al.
(2023) [37]

Meng et al.
(2023) [38]

Nakayama et
al. (2023) [39]

Moon et al.
(2023) [40]

Huang et al.
(2024) [41]

Table 3. Details

UNet-ResNet (ResNet-34 as an
encoder for UNet)

Mask-RCNN for artery
segmentation, CNN for out-of-plane
translation prediction

Deep Complex Convolutional Neural
Network (DCCNN)

Deep Convolutional Neural Network
(CNN) with 8 or 10 convolutional
layers, 3-4 down-sampling
operations, and a feature fusion
approach

Dilated attention U-Net for
segmentation, ResNet18 for lesion
classification

ResNet101 - Convolutional Neural
Network (CNN)

Multi-Modal Deep Learning model
with CNNs for 1D and 2D feature
extraction

Multisequence CNN with ResNetv2
backbone and soft attention

Intersection-over-Union (IoU)
and Dice Loss
5-fold cross-validation

Comparison with traditional
velocimetry methods (High-
Pass Filter (HPF) and Singular
Value Decomposition (SVD))

8-fold cross-validation on
three different dataset splits
(DB1-3)

5-fold cross-validation

5-fold cross-validation

Cross-entropy loss

Training/Test set (80/20)

IoU: 84.50%, Dice Loss: 0.0857
(for UNet-ResNet)

Absolute Mean Error: 0.28 +£0.28
mm, Median Drift Error: 8.98%

Normalized Root Mean Square
Error NRMSE): reduced by
47.20% (comp. to HPF) and
45.45% (comp. to SVD), Goodness-
of-fit (R?): improved by 5.64%
(comp. to HPF) and 3.36% (comp.
to SVD), Running time: reduced by
82.10% (comp. to HPF) and
21.11% (comp. to SVD)
Accuracy: 0.774 (best on DB1 +
fusion + 4 down-sampling), 0.647
(DB1 & 2 + fusion + 3 down-
sampling), 0.632 (DB1 & 2 & 3 +
only image + 4 down-sampling)
Dice Similarity Coefficient (DSC):
79.21% (thrombi segmentation),
F1-score: 96.42% (thrombi
detection)

Classification accuracy: 0.76
(portable) and 0.73 (stationary),
AUC: 0.89 (portable) and 0.88
(stationary)

Precision: 0.97, Sensitivity: 0.97,
Fl1-score: 0.97, Accuracy: 0.96,
AUC: 0.99

AUC: 0.74, Sensitivity: 0.73,
Specificity: 0.68 (with soft
attention)

about the used datasets and the challenges/limitations presented in each of the papers included in the scoping

review.
Author (year) RQS8. What datasets are used and if any RQ9. What challenges or limitations are identified in the
are available? proposed DL?
Gerber et al. 18 TEE images (9 tumour, 9 thrombi). Not = - ANN struggled with cases where tumours and thrombi had

(2000) [20]

Kyriacou et al.
(2005) [21]

Strzelecki et
al. (2006) [22]

publicly available.

274 ultrasound images (137 symptomatic,
137 asymptomatic). Not publicly available.

163 annotated echocardiograms (91
thrombi, 28 benign and 44
malignant tumours), 256 grey levels

bitmap images, 640x480 pixels. Private

dataset.

similar echogenic patterns.

- Small dataset.

- Lack of standardized echocardiographic settings.

- Difficult segmentation due to plaque edges blending with
blood and acoustic shadows.

- The diagnostic yield was lower than texture-based

approaches.
- Ultrasound artifacts.
- Training dependence.

- Subjectivity in annotations.

10



Author (year)

RQ8. What datasets are used and if any
are available?

RQ9. What challenges or limitations are identified in the
proposed DL?

Dahabiah et al.
(2007) [23]

Sun et al.
(2014) [24]

Smistad &
Lavstakken
(2016) [25]

Jun et al.
(2017) [26]

Tanno et al.
(2018) [27]

Jun et al.
(2019) 28]

Cao et al.
(2020) [29]

Cao et al.
(2020) [30]

Johnstonbaugh
et al. (2020)
[31]

Bai et al.
(2021) [32]

Kainz et al.
(2021) [33]

Hernanda et al.
(2022) [34]

US images of VT collected for indexing
and retrieval. Not publicly available.

650 TEE images from 130 patients with
atrial fibrillation. Not publicly available.

12,804 subimages from 15 subjects. Not
publicly available.

12,325 IVUS images from 100 patients,
co-registered with OCT images. Not
publicly available.

1150 ultrasound videos (100 to 200
frames) from 115 healthy volunteers. Not
publicly available.

12,325 IVUS images from 100 patients,
co-registered with OCT images. Not
publicly available.

2288 IVUS images (1144 normal and 1144
bifurcated blood vessels) for classification.
6360 IVUS images (1144 bifurcated and
5216 normal blood vessels) for
segmentation. Not publicly available.

3535 IVUS images from 23 atherosclerotic
rabbit models. Not publicly available.

Simulated photoacoustic signals with
20,300 different target positions in a tissue
model (10-50 mm depth). No public
dataset mentioned.

699 vein US images from 211 subjects.
Available upon request.

1500 ultrasound videos from 255 subjects.
External validation on 83 patients (53 UK,
30 Germany). Available upon request.

536 ultrasound images from phantom-
based human body simulations. No public
dataset mentioned.

- High uncertainty in VT characterization.

- Operator dependency in US interpretation.

- Need for a large, annotated dataset for ANN training.

- Variability in echogenicity characterization.

- High false-positive rate with TEE.

- Lower accuracy in junior radiologists without the proposed
solution.

- Manual selection of region of interest may introduce human
erTor.

- Vessel model assumes elliptical shape, which is more suitable
for arteries than veins.

- No consideration for rotated vessels.

- The model is trained only in specific anatomical regions,
limiting generalizability.

- IVUS has lower resolution than Optical Coherence
Tomography (OCT), making TCFA detection challenging.
- The model relies on feature extraction rather than direct
image classification.

- Limited dataset diversity.

- Challenges in generalizing to all vein landmarks.

- Domain shift across different ultrasound devices.

- The dataset included only patients with plaques above a
certain level, limiting generalizability.

- While CNN achieved the best performance, it lacks
interpretability compared to feature-based methods.

- The study lacked a true control group of healthy patients.
- Difficulty in segmenting bifurcated vessels.

- Accuracy of boundary detection for precise 3D
reconstruction.

- No well-established critical value for vulnerability index.
- Limited dataset (from animal models, not human).

- Need for human data validation to confirm applicability.
- Decreased signal intensity at deeper tissue layers.

- Optical scattering affecting photoacoustic signals.

- Limitations in real-time clinical applicability.

- Challenges include high noise in vein ultrasound images.

- Difficulty in identifying the compression point due to
anatomical variations.

- Need for further multi-centre validation.

- Operator dependency in free-hand ultrasound.

- Domain shift between different ultrasound devices.

- Small external validation sample sizes.

- Clinical liability issues in replacing expert radiologists.

- Vanishing gradient problem in deep networks (solved using
ResNet encoder).

- Difficulty in segmenting veins due to the presence of blood
clots.
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Author (year) RQS8. What datasets are used and if any

are available?

RQ9. What challenges or limitations are identified in the
proposed DL?

Leblanc et al.
(2022) [35]

111 tracked US videos (left/right femoral
arteries) from 18 healthy volunteers. Not
publicly available.

Lei et al.
(2022) [36]

Simulated ultrasound data generated using
the Field II platform

Olivier et al.
(2023) [37]

US images from 178 patients and 3
different vendors (63, 102, 13 patients to 3
splits) gathered from EDITH multi-
modality database. Not publicly available.

Meng et al.
(2023) [38]

5,089 IVUS images from 100 patients. Not
publicly available.

Nakayama et
al. (2023) [39]

128,494 US images from stationary and
46,338 from portable equipment (20
subjects). Dataset is not publicly available.
Self-produced dataset (1280 waveforms
(1D) for training, 201 frequency spectra
(2D) for validation)

801 archival ultrasound acquisitions along
the femoral vein from 201 patients.
Publicly available at GitHub.
(https://github.com/Ouwen/automatic-
spontaneous-echo-contrast).

Moon et al.
(2023) [40]

Huang et al.
(2024) [41]

- Needs further evaluation in patients with PAD.

- Limited dataset.

- It does not account for orientation.

- Segmentation process is time-consuming.

- Noise in clinical ultrasound data affects generalization.

- Need for large-scale real patient datasets to improve real-
world applicability.

- Blood flow patterns in complex cases (e.g., turbulence,
vascular stenosis) require further testing.

- Model performance varies across databases.

- Fusion of clinical data with images only improved accuracy
with specific model architectures.

- Standardized ultrasound devices and acquisition settings are
needed for better reliability.

- Limited dataset size (100 patients), single-centre study, and
need for multi-centre validation.

- Model refinement is needed for high-risk lesion stratification.
- The dataset was limited to healthy individuals.

- Performance needs validation in patients with actual DVT.

- The experiment was conducted on self-produced data,
requiring further validation for clinical application.

- Additional research needed to confirm clinical significance.

- SEC detection requires expertise, is not routinely reported,
and has challenges in achieving perfect agreement among
experts.

- Limited large-scale evidence for treatment decisions based on
SEC.

Figure 2 illustrates the distribution of retrieved unique papers (green bars) and finally included papers (orange bars)
over time, spanning from 1997 to 2024. The number of retrieved papers represents all relevant studies identified, whereas
the included papers indicate those that met the selection criteria for our systematic analysis. The trend shows a significant
increase in research activity in the field, particularly after 2015, with a rapid rise in publications from 2020 onward. This
reflects the growing interest in deep learning and machine learning applications for thrombosis detection and risk
assessment using ultrasound imaging. While the number of retrieved papers surged in recent years, only a fraction was
ultimately included during the selection process. The peak in 2023 suggests an increasing focus on this topic, aligning
with advancements in Al-driven medical imaging technologies.
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Figure 2. Trend of retrieved and included papers for DL-based thrombosis assessment using US imaging.

The distribution of the included papers by publication type—journal articles (55%) and conference papers (45%)—
is presented in Figure 3. Out of the total selected studies, 12 papers were published in journals, while 10 papers were
presented at conferences. The relatively balanced distribution indicates that both journal and conference publications
contributed somewhat equally to research on deep learning-based thrombosis detection and risk assessment using
ultrasound imaging. Journals provide comprehensive and peer-reviewed studies, whereas conferences showcase cutting-
edge developments and emerging trends in the field.

Journal
papers, 12
(55%)

Conference
papers, 10
(45%)

Figure 3. Distribution of included papers by publication type (journal vs. conference papers).

Figure 4 illustrates the primacy clinical focus of studies examined in the included publications. The distribution is
as follows:

— Venous thrombosis (45%) — Representing the largest portion, 10 studies focused on thrombosis in veins,
including deep vein thrombosis (DVT) and pulmonary embolism (PE).

— Arterial thrombosis (41%) — 9 studies examined arterial thrombotic conditions, including coronary artery
disease, carotid thrombosis, and aortic thrombosis. Some of these studies also assessed plaque vulnerability,
which is closely linked to thrombosis risk.
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— Cardiac thrombosis (14%) — 3 studies investigated intracardiac thrombi, including left atrial and left atrial
appendage (LAA) thrombi.

Additional studies focused on vascular conditions indirectly related to thrombosis detection, such as carotid
atherosclerotic plaque characterization, iliac vein compression, and peripheral artery disease. These studies primarily
assess the risk of thrombosis rather than detecting an existing thrombus.

The relatively balanced focus on venous and arterial thrombosis highlights the versatility of deep learning models in
various vascular conditions. However, cardiac thrombosis remains a smaller research area, particularly in earlier studies
(before 2014).

Cardiac
thrombosis, 3
(14%)

Venous
thrombosis,
10 (45%)

Arterial
thrombosis
(including
coronary/aorti
c¢/carotid), 9
(41%)

Figure 4. Distribution of primary clinical focus in included papers.

Figure 5 illustrates the distribution of the clinical relevance of the included studies in relation to thrombosis detection
and risk assessment. The studies were categorized into the following groups:

— Direct thrombosis detection (10 studies, 46%) — These studies specifically focused on identifying thrombi in
veins, arteries, or cardiac chambers using ultrasound imaging and deep learning techniques.

— Thrombotic risk assessment (8 studies, 36%) — These studies aimed to evaluate thrombotic risk factors, such as
vulnerable plaques, vessel abnormalities, and blood flow characteristics, which may contribute to thrombosis
formation.

— Indirect thrombosis assessment (2 studies, 9%) — These studies examined conditions that are indirectly linked to
thrombosis, such as iliac vein compression syndrome (IVCS), which can predispose patients to deep vein
thrombosis.

— Potential application for thrombotic risk (2 studies, 9%) — These studies primarily focused on vascular structures,
such as blood vessel segmentation, which could serve as a supporting tool for thrombotic risk evaluation.

The distribution highlights that the majority of studies (46%) directly targeted thrombus detection, while a significant
proportion (36%) were dedicated to assessing risk factors associated with thrombosis development. The remaining
studies focused on supporting diagnostic capabilities and related vascular conditions, which could contribute to
advancements in thrombosis prediction and prevention.
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Figure 5. Distribution of clinical relevance to thrombosis in the included studies.

Figure 6 presents the distribution of ultrasound imaging modalities used in deep learning-based thrombosis detection
and/or risk assessment studies. The number of papers utilizing each modality is shown, highlighting the dominant

imaging techniques:

- B-mode Ultrasound Imaging (10+ papers) — The most used modality, applied in vein compressibility analysis

for DVT detection, arterial plaque segmentation, and general thrombus identification.

— Doppler Ultrasound (1 paper) — Less frequently used, but valuable for assessing carotid blood flow velocity,

contributing to thrombotic risk prediction.

— Transesophageal Echocardiography (TEE) (3 papers) — Primarily used for cardiac thrombus detection,

particularly in left atrial (LA) and left atrial appendage (LAA) thrombi.

— Intravascular Ultrasound (IVUS) (5 papers) — Applied in arterial thrombosis studies, enabling detailed imaging

of arterial walls, plaque characterization, and vulnerable lesion detection.

— Specialized Imaging Modalities (2 papers) — Includes photoacoustic imaging (PAI) and laser-generated focused
ultrasound (LGFU), which provide enhanced visualization of vascular structures and thrombosis features.

The predominance of B-mode ultrasound underscores its role as the primary imaging technique for deep learning
applications in thrombosis detection. Other modalities provide specialized diagnostic advantages, supporting risk

assessment and thrombosis characterization in specific vascular conditions.
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Figure 6. Distribution of US imaging modalities used in DL studies for thrombosis assessment.

Figure 7 presents the distribution of prediction tasks in deep learning models applied to thrombosis assessment using

ultrasound imaging. The studies are categorized into three main task types:

— Classification Tasks (57%) — The majority of models focus on classification-based predictions, such as
distinguishing between thrombi and tumours, vulnerable and stable plaques, or identifying specific thrombotic

conditions.

—  Segmentation Tasks (24%) — These models are designed for automatic segmentation of vascular structures, such

as blood vessels, thrombi, and plaques, allowing for precise localization and quantification.

— Hybrid Tasks (19%) — Some studies employ a combination of classification and segmentation, integrating

detailed structural analysis with predictive modelling to enhance diagnostic capabilities.

The prevalence of classification-based tasks highlights the importance of automated thrombus identification, while

segmentation plays a crucial role in detailed structural analysis for medical imaging applications.

Hybrid
(Classification +
Segmentation)

19%

Classification
Tasks
57%

Segmentation
Tasks
24%

Figure 7. Distribution of prediction tasks in DL-based thrombosis assessment.
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Figure 8 shows the distribution of different deep learning model types applied in thrombosis assessment using
ultrasound imaging. The models are categorized into five main groups:

— Standard CNN-based Models (35%) — The most common approach, utilizing conventional convolutional neural
networks (CNNs) for feature extraction and classification.

— ANN-based Models (26%) — Includes various artificial neural networks (ANNs), such as feedforward ANN,
probabilistic neural networks (PNN), and other statistical ANN-based techniques.

— Advanced CNN-based Models (17%) — Encompasses more complex architectures, including ResNet, and multi-
modal CNN approaches that enhance performance.

- Segmentation-focused Models (13%) — Includes U-Net, Mask-RCNN, and similar deep learning architectures
designed for precise segmentation of thrombi and vascular structures.

—  Other Models (9%) — Covers alternative machine learning methods such as random forests, support vector
machines (SVMSs), or hybrid approaches.

The dominance of CNN-based models reflects the strong reliance on deep learning for feature extraction and pattern
recognition in ultrasound-based thrombosis detection, while segmentation-focused models are crucial for detailed
anatomical and thrombus visualization.

Other Models ANN-based

9% Models
Segmentation- 26%
focused
Models (U-
Net, Mask-
RCNN)
13%
Advanced Standard
CNN-based CNN-based
Moo(l)els Models
17% 35%

Figure 8. Distribution of deep learning model types used in thrombosis assessment.

Finally, the distribution of validation methods used in deep learning models is shown in Figure 9. The most
frequently employed approach is cross-validation (41%), where datasets are split into multiple folds for training and
testing, ensuring robust model generalization. The training/test set method (32%) is also commonly used, dividing the
dataset into separate training and test sets to evaluate model performance on unseen data. Additionally, 27% of studies
utilize other validation methods, including external dataset validation, cross-entropy loss or expert comparison studies.
The dominance of cross-validation highlights its effectiveness in enhancing model robustness and mitigating overfitting,
while training/test set approaches remain widely used for straightforward performance assessment. Only two studies
within the included literature have progressed beyond algorithm development to clinical evaluation settings.
Oppenheimer et al. [42] conducted a study to assess the feasibility of Al-assisted DVT triage using AutoDVT [27],
reporting 100% sensitivity and 95.12% specificity in scans obtained by non-specialists, and a 53% reduction in the need
for formal duplex ultrasound imaging. Similarly, Nothnagel and Aslam [43] evaluated Al-guided point-of-care
ultrasound (POCUS) [33] among older patients in a remote triage scenario, finding that 91% of complete scans were
diagnostically sufficient and enabled clinicians to triage 53% of patients as low risk without further imaging.
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Figure 9. Distribution of validation methods used in deep learning models to evaluate their performance.

4. Discussion

This scoping review highlights the increasing role of deep learning (DL) in thrombosis detection and risk assessment
using ultrasound (US) imaging. Across the 22 included studies, various DL architectures—ranging from convolutional
neural networks (CNNs) to hybrid models integrating clinical data—demonstrated significant potential for classification,
segmentation, thrombus risk prediction, and automation of vascular ultrasound analysis. These findings reinforce the
growing impact of Al-driven diagnostic tools in enhancing non-invasive thrombus detection, reducing operator
dependency, and improving clinical decision-making.

4.1. Summary of Key Findings

This scoping review aimed to comprehensively analyse deep learning (DL) approaches for thrombosis detection and
risk assessment via ultrasound imaging, focusing on their methodological strengths, clinical applicability, and
limitations. Several key findings emerged from the synthesis of included studies.

Firstly, convolutional neural networks (CNNs), U-Net, ResNet, and artificial neural networks (ANNs) were
identified as the predominant deep learning architectures applied in ultrasound-based thrombosis diagnostics. CNNs
demonstrated superior diagnostic performance in prediction tasks including thrombus -classification, vessel
segmentation, and thrombus localization. Notably, the CNN-based AutoDVT [42] achieved exceptional sensitivity
(100%) and specificity (95.12%) in identifying proximal deep vein thrombosis, underscoring their clinical utility and
ability to streamline diagnostic processes by significantly reducing dependency on expert interpretation.

Secondly, significant heterogeneity was observed in dataset characteristics, model validation strategies, and
performance metrics used across reviewed studies. This variation highlights a critical gap regarding standardization,
making direct comparisons challenging. Despite this, studies consistently reported high sensitivity and specificity,
indicating robust DL capabilities in accurately identifying thrombosis across venous, arterial, and cardiac domains
[34,36,38].

Thirdly, ultrasound imaging modalities such as B-mode ultrasound, Doppler ultrasound, intravascular ultrasound
(IVUS), and transesophageal echocardiography (TEE) were successfully integrated with DL algorithms. B-mode
ultrasound was particularly prevalent due to its accessibility and real-time diagnostic capability. DL approaches utilizing
IVUS achieved high accuracy in detecting thrombotic lesions, significantly contributing to cardiovascular risk
assessment and lesion classification [36,38].

Moreover, DL-driven ultrasound assessments showed considerable promise in mitigating operator dependency and
variability associated with traditional ultrasound interpretation. Al-guided point-of-care ultrasound (POCUS) techniques
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particularly showcased high sensitivity and specificity, emphasizing their potential for widespread application in
emergency and remote care settings [39,42,43].

Finally, despite these advancements, persistent challenges were identified including limited availability of large-
scale, publicly accessible datasets, variability in image quality, and the need for explainable Al models to enhance
clinical acceptance. Addressing these challenges through future research and collaborative efforts would significantly
enhance the generalizability, robustness, and practical adoption of DL models in clinical settings [37,40,41].

Collectively, these key findings illustrate the promising potential and current limitations of DL-based ultrasound
imaging in thrombosis detection and risk assessment, laying a strong foundation for future research aimed at enhancing
clinical diagnostic capabilities and patient outcomes.

4.2. Comparison with Existing Literature

The findings of this scoping review align with and extend previous research on deep learning (DL) and machine
learning (ML) applications in vascular imaging and thrombosis detection. Prior bibliometric analyses have highlighted
the increasing role of Al in vascular surgery, with a focus on carotid artery disease, abdominal aortic aneurysms, and
peripheral arterial disease [8]. The present study reinforces these trends by demonstrating that Al-driven ultrasound
imaging plays a crucial role in thrombosis detection and risk assessment.

In venous thrombosis detection, previous studies acknowledged the operator dependency of compression ultrasound
techniques and the variability in human interpretation [15]. Al-assisted point-of-care ultrasound (POCUS) has been
explored as a solution, but most earlier studies lacked clinical validation. The reviewed studies demonstrated that Al
models such as AutoDVT significantly improve DVT detection, achieving a sensitivity of 100% and specificity of 91%,
thus reducing the need for formal duplex scans [42]. This aligns with prior research advocating for automated, expert-
independent DVT diagnostics [16].

For arterial thrombosis, earlier studies explored Al applications in detecting vulnerable plaques using intravascular
ultrasound (IVUS) but relied heavily on manual feature extraction and semi-automated classification [14]. The present
review found that CNN-based approaches for arterial thrombosis detection achieved an AUC of 0.911, surpassing
conventional methods [28]. The transition from manual feature-based models to fully automated deep learning
segmentation and classification systems is a significant advancement, reducing subjectivity in plaque stability
assessment and improving risk prediction for acute coronary syndrome (ACS).

In cardiac thrombosis detection, transesophageal echocardiography (TEE) has long been considered the gold
standard, but manual interpretation poses limitations in diagnostic efficiency and interobserver variability [9]. The
reviewed studies show that Al-assisted CAD systems for TEE imaging enhance thrombus detection accuracy,
particularly for left atrial thrombi [24]. Furthermore, DL models using texture-based feature extraction demonstrated the
ability to differentiate between intracardiac thrombi and tumours, a challenge previously addressed through subjective
expert evaluation [22].

Compared to existing literature, this scoping review uniquely consolidates DL applications across venous, arterial,
and cardiac thrombosis using ultrasound imaging, highlighting the evolution from semi-automated models to fully Al-
driven workflows. The findings reinforce the growing role of Al in real-time, remote, and non-specialist-assisted
diagnostics [15,16]. Future research should emphasize large-scale validation, clinical integration, and regulatory
approval to ensure Al-driven thrombosis detection is effectively incorporated into clinical practice.

4.3.  Strengths and Clinical Implications

This review identifies several notable strengths of DL-based thrombosis detection using US imaging:

1. Increased diagnostic accuracy: DL-based segmentation and classification models achieved high sensitivity,
specificity, and AUC scores, suggesting strong potential for clinical adoption [28,44].

2. Reduction in operator dependency: Al-guided imaging allows non-experts to perform POCUS assessments,
reducing the burden on radiologists and vascular specialists [33].

3. Efficiency and cost reduction: Automated classification could streamline diagnostic workflows, reducing the
need for unnecessary imaging studies and shortening diagnostic delays [33].
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4. Potential for remote and point-of-care applications: Al-enabled handheld US devices could expand thrombosis
screening capabilities in rural and low-resource settings, improving early detection and intervention [42].

4.4. Limitations and Challenges

Despite the promising findings, several limitations remain that must be addressed in future work:

— Dataset availability and bias: Many studies relied on proprietary or small-scale datasets, limiting the
generalizability of their findings. The lack of open-access, standardized thrombosis imaging datasets hinders
broader Al development.

— Lack of prospective clinical validation: While most studies reported high accuracy in retrospective datasets, real-
world clinical validation remains limited. Further prospective trials are needed to assess Al performance in
diverse patient populations.

— Computational requirements and model interpretability: Complex DL models often require significant
computational resources, making them less accessible in low-resource clinical settings. Additionally, the "black
box" nature of deep learning models raises concerns about explainability and clinical trust.

— Regulatory and ethical considerations: Al deployment in thrombosis diagnostics faces regulatory challenges,
including FDA/EMA approval and ensuring compliance with medical Al guidelines.

5. Conclusions

This scoping review examined the role of deep learning (DL) in thrombosis detection and risk assessment using
ultrasound (US) imaging across venous, arterial, and cardiac domains. The 22 included studies demonstrated that DL
models—particularly convolutional neural networks (CNNs), U-Net, and ResNet—consistently achieved high
performance in thrombus classification, vessel segmentation, and risk prediction tasks. These approaches enhance
diagnostic accuracy, reduce operator dependency, and enable automation in vascular ultrasound analysis.

In venous thrombosis, DL methods showed strong capabilities in detecting deep vein thrombosis (DVT) and
evaluating vein compressibility, with Al-assisted point-of-care ultrasound (POCUS) extending diagnostic access to
remote and emergency settings. For arterial thrombosis, DL algorithms integrated with intravascular ultrasound (IVUS)
enabled accurate detection of high-risk atherosclerotic plaques, while 3D reconstruction tools improved vascular lesion
assessment. In cardiac applications, DL-enhanced transesophageal echocardiography (TEE) facilitated the detection and
classification of intracardiac thrombi, supporting stroke prevention and treatment planning.

Despite these advances, key challenges remain, including the need for large-scale, annotated ultrasound datasets,
improved model explainability, and real-world clinical validation. Future research should focus on developing
interpretable, ethically aligned Al systems that can be seamlessly integrated into existing diagnostic workflows.

Ultimately, Al-enhanced ultrasound offers a scalable and cost-effective solution for improving diagnostic precision
and patient outcomes in thrombosis care. As regulatory frameworks and technological standards evolve, the adoption of
trustworthy and clinically validated DL models will be essential to achieving widespread, equitable implementation of
Al in vascular medicine.
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